Ji Hyuk Ko, Kang Hwa Jeong, Su Bin Son, Jae Young Lee
{"title":"Structural analysis of ExaC, an NAD<sup>+</sup>-dependent aldehyde dehydrogenase, from Pseudomonas aeruginosa.","authors":"Ji Hyuk Ko, Kang Hwa Jeong, Su Bin Son, Jae Young Lee","doi":"10.1016/j.bbrc.2024.151077","DOIUrl":null,"url":null,"abstract":"<p><p>The opportunistic pathogen Pseudomonas aeruginosa (Pa) utilizes ethanol as an energy source, however, ethanol metabolism generates acetaldehyde, a toxic byproduct. To mitigate this toxicity, P. aeruginosa employs aldehyde dehydrogenases (ALDHs) to oxidize acetaldehyde into less harmful compounds. ExaC, an NAD<sup>+</sup>-dependent ALDH from P. aeruginosa (PaExaC) and a member of group X ALDHs, plays a critical role in this detoxification by oxidizing both aldehydes and hydrazones. In this study, we determined the crystal structures of PaExaC in its apo and NAD<sup>+</sup> -bound forms. PaExaC functions as a homodimer, with three distinct domains: an NAD<sup>+</sup> binding domain, a catalytic domain, and an oligomerization domain. Structural analyses revealed that PaExaC's substrate entry channel (SEC) is optimized for size-selective aldehyde metabolism, with Leu120, Tyr462, and Thr302. Comparative structural and docking analyses with other ALDHs further validated PaExaC's preference for small aliphatic aldehydes and hydrazones. These findings highlight PaExaC's role in aldehyde detoxification, facilitating P. aeruginosa survival in diverse environments, and provide structural insights for developing targeted inhibitors to help treat infections.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"742 ","pages":"151077"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbrc.2024.151077","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (Pa) utilizes ethanol as an energy source, however, ethanol metabolism generates acetaldehyde, a toxic byproduct. To mitigate this toxicity, P. aeruginosa employs aldehyde dehydrogenases (ALDHs) to oxidize acetaldehyde into less harmful compounds. ExaC, an NAD+-dependent ALDH from P. aeruginosa (PaExaC) and a member of group X ALDHs, plays a critical role in this detoxification by oxidizing both aldehydes and hydrazones. In this study, we determined the crystal structures of PaExaC in its apo and NAD+ -bound forms. PaExaC functions as a homodimer, with three distinct domains: an NAD+ binding domain, a catalytic domain, and an oligomerization domain. Structural analyses revealed that PaExaC's substrate entry channel (SEC) is optimized for size-selective aldehyde metabolism, with Leu120, Tyr462, and Thr302. Comparative structural and docking analyses with other ALDHs further validated PaExaC's preference for small aliphatic aldehydes and hydrazones. These findings highlight PaExaC's role in aldehyde detoxification, facilitating P. aeruginosa survival in diverse environments, and provide structural insights for developing targeted inhibitors to help treat infections.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics