Synergist effect of thermosonication and NaCl on inactivation of Staphylococcus aureus and Shigella flexneri in lettuce: The effect of acoustic field and reaction kinetics.

IF 8.7 1区 化学 Q1 ACOUSTICS
Reza Roohi, Seyed Mohammad Bagher Hashemi, Mohammad Reza Zarrinpour Balaei
{"title":"Synergist effect of thermosonication and NaCl on inactivation of Staphylococcus aureus and Shigella flexneri in lettuce: The effect of acoustic field and reaction kinetics.","authors":"Reza Roohi, Seyed Mohammad Bagher Hashemi, Mohammad Reza Zarrinpour Balaei","doi":"10.1016/j.ultsonch.2024.107161","DOIUrl":null,"url":null,"abstract":"<p><p>The study aimed to investigate the effect of thermosonication (TS; 37 KHz, 300 W; 30, 40, 50, and 60 °C for 10 min) and NaCl (12 % w/v) on the inactivation of Staphylococcus aureus and Shigella flexneri in lettuce, as well as to examine the kinetics of inactivation and the thermodynamic behaviors of the process. Computational Fluid Dynamics (CFD) simulations were employed to analyze the acoustic pressure field, velocity contours, and streamlines. The results showed that NaCl addition had the least impact on inactivation compared to TS and combined NaCl + TS. Increasing the temperature led to higher inactivation of both bacteria, with a more significant effect at 60 °C. Thermosonication treatment had a more consistent effect on inactivation compared to the addition of NaCl. When exposed to thermosonication, the population of S. aureus and S. flexneri could be reduced by 5.1 to 6.9 log CFU/g and 5.5 to 7.4 log CFU/g, respectively, at temperature levels of 30 and 60 °C. Additionally, no significant relationship between entropy reduction and type of microorganisms was observed. The samples that were treated only with NaCl had higher energy absorption than the other samples.</p>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"112 ","pages":"107161"},"PeriodicalIF":8.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ultsonch.2024.107161","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The study aimed to investigate the effect of thermosonication (TS; 37 KHz, 300 W; 30, 40, 50, and 60 °C for 10 min) and NaCl (12 % w/v) on the inactivation of Staphylococcus aureus and Shigella flexneri in lettuce, as well as to examine the kinetics of inactivation and the thermodynamic behaviors of the process. Computational Fluid Dynamics (CFD) simulations were employed to analyze the acoustic pressure field, velocity contours, and streamlines. The results showed that NaCl addition had the least impact on inactivation compared to TS and combined NaCl + TS. Increasing the temperature led to higher inactivation of both bacteria, with a more significant effect at 60 °C. Thermosonication treatment had a more consistent effect on inactivation compared to the addition of NaCl. When exposed to thermosonication, the population of S. aureus and S. flexneri could be reduced by 5.1 to 6.9 log CFU/g and 5.5 to 7.4 log CFU/g, respectively, at temperature levels of 30 and 60 °C. Additionally, no significant relationship between entropy reduction and type of microorganisms was observed. The samples that were treated only with NaCl had higher energy absorption than the other samples.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信