Lucía Guggeri, Ileana Sosa-Redaelli, Magdalena Cárdenas-Rodríguez, Martina Alonso, Gisell González, Hugo Naya, Victoria Prieto-Echagüe, Paola Lepanto, Jose L Badano
{"title":"Follistatin like-1 (<i>Fstl1</i>) regulates adipose tissue development in zebrafish.","authors":"Lucía Guggeri, Ileana Sosa-Redaelli, Magdalena Cárdenas-Rodríguez, Martina Alonso, Gisell González, Hugo Naya, Victoria Prieto-Echagüe, Paola Lepanto, Jose L Badano","doi":"10.1080/21623945.2024.2435862","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is a highly prevalent disorder with complex aetiology. Therefore, studying its associated cellular and molecular pathways may be aided by analysing genetic tractable diseases. In this context, the study of ciliopathies such as Bardet-Biedl syndrome has highlighted the relevance of primary cilia in obesity, both in the central nervous system and peripheral tissues. Based on our previous <i>in vitro</i> results supporting the role of a novel Bbs4-cilia-Fstl1 axis in adipocyte differentiation, we evaluated the <i>in vivo</i> relevance of the zebrafish orthologous genes <i>fstl1a</i> and <i>fstl1b</i> in primary cilia and adipose tissue development. Using a combination of knockdowns and a new <i>fstl1a</i> mutant line, we show that <i>fstl1a</i> promotes primary cilia formation in early embryos and participates in adipose tissue formation in larvae. We also show that <i>fstl1b</i> partially compensates for the loss of <i>fstl1a</i>. Moreover, in high fat diet, <i>fstl1a</i> depletion affects the expression of differentiation and mature adipocyte markers. These results agree with our previous <i>in vitro</i> data and provide further support for the role of FSTL1 as a regulator of adipose tissue formation. Dissecting the exact biological role of proteins such as FSTL1 will likely contribute to understand obesity onset and presentation.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2435862"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2024.2435862","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity is a highly prevalent disorder with complex aetiology. Therefore, studying its associated cellular and molecular pathways may be aided by analysing genetic tractable diseases. In this context, the study of ciliopathies such as Bardet-Biedl syndrome has highlighted the relevance of primary cilia in obesity, both in the central nervous system and peripheral tissues. Based on our previous in vitro results supporting the role of a novel Bbs4-cilia-Fstl1 axis in adipocyte differentiation, we evaluated the in vivo relevance of the zebrafish orthologous genes fstl1a and fstl1b in primary cilia and adipose tissue development. Using a combination of knockdowns and a new fstl1a mutant line, we show that fstl1a promotes primary cilia formation in early embryos and participates in adipose tissue formation in larvae. We also show that fstl1b partially compensates for the loss of fstl1a. Moreover, in high fat diet, fstl1a depletion affects the expression of differentiation and mature adipocyte markers. These results agree with our previous in vitro data and provide further support for the role of FSTL1 as a regulator of adipose tissue formation. Dissecting the exact biological role of proteins such as FSTL1 will likely contribute to understand obesity onset and presentation.
期刊介绍:
Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.