Distinctive adsorption and transport behaviors of short-chain versus long-chain perfluoroalkyl acids in a river sediment

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES
Na Liu, Mengyan Li
{"title":"Distinctive adsorption and transport behaviors of short-chain versus long-chain perfluoroalkyl acids in a river sediment","authors":"Na Liu,&nbsp;Mengyan Li","doi":"10.1007/s11356-024-35725-1","DOIUrl":null,"url":null,"abstract":"<div><p>Perfluoroalkyl acids (PFAAs) embrace perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and other concerning chemicals of different chain length and terminal moieties. PFAAs can leach from municipal wastewater facilities as point sources discharging into rivers and receiving streams. In this study, we investigated the adsorption and transport behaviors of six select PFAAs in a Hudson River (USA) sediment in both batch and mesocosm studies. The adsorption capacities single and dual solute systems followed the order: PFBA &lt; PFHxA ≈ PFBS &lt; PFHxS &lt; PFOA &lt;&lt; PFOS. Mesocosm experiment that receives a continuous point source discharge of a mixture of these six PFAAs reached equilibrium after 4 weeks of operation. Total adsorbed PFAAs in the sediment was extracted and analyzed, following PFHxS (0.85 mg, 20.4%) ≈ PFBS (0.92 mg, 21.7%) &lt; PFOA (1.02 mg, 27.3%) ≈ PFHxA (1.04 mg, 29.8%) &lt; PFBA (1.12 mg, 30.1%) &lt;&lt; PFOS (1.55 mg, 39.2%). PFOS showed highest adsorption, concentrating on the surface layer. Noticeably, two short-chain PFAAs, PFBA and PFHxA, were found with high vertical mobility, partitioning into deeper sediment. Two hotspots for PFAA sediment contamination were formed near the sediment surface downstream from the point source, providing new prospects to guide PFAA sediment cleanup and monitoring.</p><div><figure><div><div><picture><source><img></source></picture></div><div><p>Graphical abstract</p></div></div></figure></div></div>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":"31 59","pages":"66854 - 66865"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11356-024-35725-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11356-024-35725-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Perfluoroalkyl acids (PFAAs) embrace perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and other concerning chemicals of different chain length and terminal moieties. PFAAs can leach from municipal wastewater facilities as point sources discharging into rivers and receiving streams. In this study, we investigated the adsorption and transport behaviors of six select PFAAs in a Hudson River (USA) sediment in both batch and mesocosm studies. The adsorption capacities single and dual solute systems followed the order: PFBA < PFHxA ≈ PFBS < PFHxS < PFOA << PFOS. Mesocosm experiment that receives a continuous point source discharge of a mixture of these six PFAAs reached equilibrium after 4 weeks of operation. Total adsorbed PFAAs in the sediment was extracted and analyzed, following PFHxS (0.85 mg, 20.4%) ≈ PFBS (0.92 mg, 21.7%) < PFOA (1.02 mg, 27.3%) ≈ PFHxA (1.04 mg, 29.8%) < PFBA (1.12 mg, 30.1%) << PFOS (1.55 mg, 39.2%). PFOS showed highest adsorption, concentrating on the surface layer. Noticeably, two short-chain PFAAs, PFBA and PFHxA, were found with high vertical mobility, partitioning into deeper sediment. Two hotspots for PFAA sediment contamination were formed near the sediment surface downstream from the point source, providing new prospects to guide PFAA sediment cleanup and monitoring.

Graphical abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信