Paulina Putko, Javier Agustin Romero, Christian F Pantoja, Markus Zweckstetter, Krzysztof Kazimierczuk, Anna Zawadzka-Kazimierczuk
{"title":"Using temperature coefficients to support resonance assignment of intrinsically disordered proteins.","authors":"Paulina Putko, Javier Agustin Romero, Christian F Pantoja, Markus Zweckstetter, Krzysztof Kazimierczuk, Anna Zawadzka-Kazimierczuk","doi":"10.1007/s10858-024-00452-9","DOIUrl":null,"url":null,"abstract":"<p><p>The resonance assignment of large intrinsically disordered proteins (IDPs) is difficult due to the low dispersion of chemical shifts (CSs). Luckily, CSs are often specific for certain residue types, which makes the task easier. Our recent work showed that the CS-based spin-system classification can be improved by applying a linear discriminant analysis (LDA). In this paper, we extend a set of classification parameters by adding temperature coefficients (TCs), i.e., rates of change of chemical shifts with temperature. As demonstrated previously by other groups, the TCs in IDPs depend on a residue type, although the relation is often too complex to be predicted theoretically. Thus, we propose an approach based on experimental data; CSs and TCs values of residues assigned using conventional methods serve as a training set for LDA, which then classifies the remaining resonances. The method is demonstrated on a large fragment (1-239) of highly disordered protein Tau. We noticed that adding TCs to sets of chemical shifts significantly improves the recognition efficiency. For example, it allows distinguishing between lysine and glutamic acid, as well as valine and isoleucine residues based on <math> <msup><mrow><mtext>H</mtext></mrow> <mtext>N</mtext></msup> </math> , N, <math><msub><mtext>C</mtext> <mi>α</mi></msub> </math> and C <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mo>'</mo></mmultiscripts> </math> data. Moreover, adding TCs to CSs of <math> <msup><mrow><mtext>H</mtext></mrow> <mtext>N</mtext></msup> </math> , N, <math><msub><mtext>C</mtext> <mi>α</mi></msub> </math> , and C <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mo>'</mo></mmultiscripts> </math> is more beneficial than adding <math><msub><mtext>C</mtext> <mi>β</mi></msub> </math> CSs. Our program for LDA analysis is available at https://github.com/gugumatz/LDA-Temp-Coeff .</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10858-024-00452-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The resonance assignment of large intrinsically disordered proteins (IDPs) is difficult due to the low dispersion of chemical shifts (CSs). Luckily, CSs are often specific for certain residue types, which makes the task easier. Our recent work showed that the CS-based spin-system classification can be improved by applying a linear discriminant analysis (LDA). In this paper, we extend a set of classification parameters by adding temperature coefficients (TCs), i.e., rates of change of chemical shifts with temperature. As demonstrated previously by other groups, the TCs in IDPs depend on a residue type, although the relation is often too complex to be predicted theoretically. Thus, we propose an approach based on experimental data; CSs and TCs values of residues assigned using conventional methods serve as a training set for LDA, which then classifies the remaining resonances. The method is demonstrated on a large fragment (1-239) of highly disordered protein Tau. We noticed that adding TCs to sets of chemical shifts significantly improves the recognition efficiency. For example, it allows distinguishing between lysine and glutamic acid, as well as valine and isoleucine residues based on , N, and C data. Moreover, adding TCs to CSs of , N, , and C is more beneficial than adding CSs. Our program for LDA analysis is available at https://github.com/gugumatz/LDA-Temp-Coeff .
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.