{"title":"Study on the protective mechanism of Xuemaitong Capsule against acute myocardial ischemia rat based on network pharmacology and metabolomics.","authors":"Jialu Zou, Shizhong Zhang, Xiaohong Zhang, Lijuan Xiong, Xuan Chen, Yanmei He, Cancan Duan, Jianyong Zhang","doi":"10.1016/j.jchromb.2024.124373","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Xuemaitong Capsule (XMT) is a widely recognized traditional Miao medicine extensively utilized in Chinese clinical settings. Previous studies have demonstrated XMT protective effects against acute myocardial ischemia (AMI). However, the mechanism by which XMT provides protection to AMI rats is yet to be fully understood.</p><p><strong>Aim of the study: </strong>The purpose of this study was to investigate the protective mechanism of XMT on AMI rats through network pharmacology, traditional pharmacodynamics and metabolomics.</p><p><strong>Material and methods: </strong>The components and potential targets of XMT were identified through the application of traditional Chinese medicine system pharmacology and traditional Chinese medicine molecular mechanism bioinformatics analysis tools. We constructed herb-composition-target networks and analyzed protein-protein interaction (PPI) networks. The potential mechanism was explored by pathway enrichment analysis. Subsequently, the AMI model was constructed by ligation of the anterior descending branch of the left coronary artery, and XMT protective effects on AMI rats were evaluated by analyzing the myocardial enzyme profiles, electrocardiograms(ECG), Triphenyltetrazolium chloride(TTC) staining, and Hematoxylin-Eosin (HE) staining in AMI rats. Metabolomics based on UHPLC-Q-Exactive Orbitrap MS was used to observe the protective effect of XMT on the serum metabolic profile of AMI, and multivariate statistical analysis further revealed the differential patterns of metabolites after XMT treatment. Finally, integrated pathway analysis was carried out to reveal the biological metabolic mechanism.</p><p><strong>Results: </strong>A total of 392 active components of XMT acted with 624 targets for treating AMI. Pathway enrichment analysis revealed that XMT could treat AMI through TNF, MAPK and PI3K-Akt signaling pathways. Further, XMT could effectively prevent ST-segment elevation in the ECG, reduce the size of myocardial infarction, decrease cardiac weight index and cardiac enzyme levels, and mitigate histological damage in the hearts of AMI rats. In addition, XMT callback 117 metabolites and four metabolic pathways, including taurine and hypotaurine metabolism, phenylalanine metabolism, pyrimidine metabolism and retinol metabolism. Through integrating network pharmacology and metabolomics, we explored the biological mechanism by which XMT treats AMI. It was speculated that the mechanism of XMT is to regulate TNF signaling, PI3K-Akt pathway and MAPK signaling pathway, and participate in cell apoptosis, oxidative stress, immune and inflammatory reaction and other biological processes.</p><p><strong>Conclusion: </strong>XMT plays a protective role in AMI rats by regulating multiple metabolic biomarkers, multiple targets and pathways. Therefore, XMT may provide a potential strategy for the treatment of AMI.</p>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1251 ","pages":"124373"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.jchromb.2024.124373","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Xuemaitong Capsule (XMT) is a widely recognized traditional Miao medicine extensively utilized in Chinese clinical settings. Previous studies have demonstrated XMT protective effects against acute myocardial ischemia (AMI). However, the mechanism by which XMT provides protection to AMI rats is yet to be fully understood.
Aim of the study: The purpose of this study was to investigate the protective mechanism of XMT on AMI rats through network pharmacology, traditional pharmacodynamics and metabolomics.
Material and methods: The components and potential targets of XMT were identified through the application of traditional Chinese medicine system pharmacology and traditional Chinese medicine molecular mechanism bioinformatics analysis tools. We constructed herb-composition-target networks and analyzed protein-protein interaction (PPI) networks. The potential mechanism was explored by pathway enrichment analysis. Subsequently, the AMI model was constructed by ligation of the anterior descending branch of the left coronary artery, and XMT protective effects on AMI rats were evaluated by analyzing the myocardial enzyme profiles, electrocardiograms(ECG), Triphenyltetrazolium chloride(TTC) staining, and Hematoxylin-Eosin (HE) staining in AMI rats. Metabolomics based on UHPLC-Q-Exactive Orbitrap MS was used to observe the protective effect of XMT on the serum metabolic profile of AMI, and multivariate statistical analysis further revealed the differential patterns of metabolites after XMT treatment. Finally, integrated pathway analysis was carried out to reveal the biological metabolic mechanism.
Results: A total of 392 active components of XMT acted with 624 targets for treating AMI. Pathway enrichment analysis revealed that XMT could treat AMI through TNF, MAPK and PI3K-Akt signaling pathways. Further, XMT could effectively prevent ST-segment elevation in the ECG, reduce the size of myocardial infarction, decrease cardiac weight index and cardiac enzyme levels, and mitigate histological damage in the hearts of AMI rats. In addition, XMT callback 117 metabolites and four metabolic pathways, including taurine and hypotaurine metabolism, phenylalanine metabolism, pyrimidine metabolism and retinol metabolism. Through integrating network pharmacology and metabolomics, we explored the biological mechanism by which XMT treats AMI. It was speculated that the mechanism of XMT is to regulate TNF signaling, PI3K-Akt pathway and MAPK signaling pathway, and participate in cell apoptosis, oxidative stress, immune and inflammatory reaction and other biological processes.
Conclusion: XMT plays a protective role in AMI rats by regulating multiple metabolic biomarkers, multiple targets and pathways. Therefore, XMT may provide a potential strategy for the treatment of AMI.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.