The Mitochondrial Genome of Melipona fasciculata (Apidae, Meliponini): Genome Organization and Comparative Analyses, Phylogenetic Implications and Divergence Time Estimations.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Geice Ribeiro da Silva, Isis Gomes de Brito Souza, Fábia de Mello Pereira, Bruno de Almeida Souza, Maria Teresa do Rêgo Lopes, Francisco Prosdocimi, Paul Bentzen, Fábio Mendonça Diniz
{"title":"The Mitochondrial Genome of Melipona fasciculata (Apidae, Meliponini): Genome Organization and Comparative Analyses, Phylogenetic Implications and Divergence Time Estimations.","authors":"Geice Ribeiro da Silva, Isis Gomes de Brito Souza, Fábia de Mello Pereira, Bruno de Almeida Souza, Maria Teresa do Rêgo Lopes, Francisco Prosdocimi, Paul Bentzen, Fábio Mendonça Diniz","doi":"10.1007/s10528-024-10991-3","DOIUrl":null,"url":null,"abstract":"<p><p>The native stingless bee Melipona fasciculata is economically and ecologically important to the Brazilian Northeast, providing a sustainable source of income to family farmers and being considered an effective pollinator in most ecosystems and crops. This study describes, for the first time, the mitogenome of the species and its phylogenetic position. The mitochondrial genome was sequenced using a MiSeq Sequencer (Illumina Inc.) and compared with other GenBank bee mitogenomes. The length of the mitochondrial DNA, excluding most of the control region, is 14,753 bp, and contains 13 protein-coding genes (PCGs), 21 transfer RNAs, 2 ribosomal RNAs (16S and 12S), and 1 AT-rich region. The GC-content of the M. fasciculata mitogenome was 13.4%. Of the 36 coding regions, 12 tRNAs and 9 PCGs were encoded in the heavy strand, and 9 tRNAs, 4 PCGs and 2 rRNAs were encoded in the light strand. The relative orientation and gene order was the same as other stingless bee mitogenomes. Phylogenetic inference produced well-resolved relationships with high statistical support for concordant branch topologies, under different optimization schemes and model parameters, within and among Melipona, Bombus, Apis, and related clades of Hymenoptera. In general, our divergence time estimates, which were based on the concatenated gene sequences (PCGs + rRNAs) from various groups, overlapped estimations captured by Bayesian analysis from different studies. The divergence time among Melipona species was estimated to occur during the Oligocene, approximately 24 Mya (95% HPD 14-36 Mya). Our results represent a valuable addition to help understanding not only the taxonomy and evolution of Brazilian stingless bee species, but also to uncover historical dispersal and isolation patterns in Meliponinae.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10991-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The native stingless bee Melipona fasciculata is economically and ecologically important to the Brazilian Northeast, providing a sustainable source of income to family farmers and being considered an effective pollinator in most ecosystems and crops. This study describes, for the first time, the mitogenome of the species and its phylogenetic position. The mitochondrial genome was sequenced using a MiSeq Sequencer (Illumina Inc.) and compared with other GenBank bee mitogenomes. The length of the mitochondrial DNA, excluding most of the control region, is 14,753 bp, and contains 13 protein-coding genes (PCGs), 21 transfer RNAs, 2 ribosomal RNAs (16S and 12S), and 1 AT-rich region. The GC-content of the M. fasciculata mitogenome was 13.4%. Of the 36 coding regions, 12 tRNAs and 9 PCGs were encoded in the heavy strand, and 9 tRNAs, 4 PCGs and 2 rRNAs were encoded in the light strand. The relative orientation and gene order was the same as other stingless bee mitogenomes. Phylogenetic inference produced well-resolved relationships with high statistical support for concordant branch topologies, under different optimization schemes and model parameters, within and among Melipona, Bombus, Apis, and related clades of Hymenoptera. In general, our divergence time estimates, which were based on the concatenated gene sequences (PCGs + rRNAs) from various groups, overlapped estimations captured by Bayesian analysis from different studies. The divergence time among Melipona species was estimated to occur during the Oligocene, approximately 24 Mya (95% HPD 14-36 Mya). Our results represent a valuable addition to help understanding not only the taxonomy and evolution of Brazilian stingless bee species, but also to uncover historical dispersal and isolation patterns in Meliponinae.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信