Yue Ren, Xiaoya Bi, Yi He, Li Zhang, Lijun Luo, Libo Li, Tianyan You
{"title":"Research progress and applications of iron-based nanozymes in colorimetric sensing of agricultural pollutants.","authors":"Yue Ren, Xiaoya Bi, Yi He, Li Zhang, Lijun Luo, Libo Li, Tianyan You","doi":"10.1016/j.bios.2024.116999","DOIUrl":null,"url":null,"abstract":"<p><p>Natural enzymes are highly valued for their efficient specificity and catalytic activity. However, their poor stability, environmental sensitivity, and costly preparation restrict their practical applications. Nanozymes are nanomaterials with superior catalytic properties that compensate for natural enzyme deficiencies. As one of the earliest developed nanozymes, iron-based nanozymes have diverse morphological structures and different simulated catalytic properties, showing promising potential for agricultural pollutant sensing. Compared with traditional detection methods, the colorimetric method based on nanozymes has the characteristics of simplicity, rapidity, and visualization, which can be used for immediate and rapid on-site detection. In this review, the catalytic types of iron-based nanozymes, such as peroxidase-like, oxidase-like, catalase-like, and superoxide dismutase-like activities, and the corresponding catalytic mechanisms are presented. The classification of iron-based nanozymes based on various structures is then discussed. Furthermore, this review focuses on the current status of iron-based nanozymes for the colorimetric detection of common agricultural pollutants, including heavy metal ions, nonmetal ions, pesticides, and pharmaceutical and personal care products. Finally, the current research status and development direction of iron-based nanozymes in sensing applications are summarized and prospected.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"271 ","pages":"116999"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.bios.2024.116999","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Natural enzymes are highly valued for their efficient specificity and catalytic activity. However, their poor stability, environmental sensitivity, and costly preparation restrict their practical applications. Nanozymes are nanomaterials with superior catalytic properties that compensate for natural enzyme deficiencies. As one of the earliest developed nanozymes, iron-based nanozymes have diverse morphological structures and different simulated catalytic properties, showing promising potential for agricultural pollutant sensing. Compared with traditional detection methods, the colorimetric method based on nanozymes has the characteristics of simplicity, rapidity, and visualization, which can be used for immediate and rapid on-site detection. In this review, the catalytic types of iron-based nanozymes, such as peroxidase-like, oxidase-like, catalase-like, and superoxide dismutase-like activities, and the corresponding catalytic mechanisms are presented. The classification of iron-based nanozymes based on various structures is then discussed. Furthermore, this review focuses on the current status of iron-based nanozymes for the colorimetric detection of common agricultural pollutants, including heavy metal ions, nonmetal ions, pesticides, and pharmaceutical and personal care products. Finally, the current research status and development direction of iron-based nanozymes in sensing applications are summarized and prospected.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.