Efficient tetracycline hydrochloride degradation via peroxymonosulfate activation by N doped coagulated sludge based biochar: Insights on the nonradical pathway.
Min Yang, Wenyu Wang, Huifang Ma, Lei Chen, Hongfang Ma, Feng Shi
{"title":"Efficient tetracycline hydrochloride degradation via peroxymonosulfate activation by N doped coagulated sludge based biochar: Insights on the nonradical pathway.","authors":"Min Yang, Wenyu Wang, Huifang Ma, Lei Chen, Hongfang Ma, Feng Shi","doi":"10.1016/j.envres.2024.120554","DOIUrl":null,"url":null,"abstract":"<p><p>Coagulation could effectively remove microplastics (MPs). However, MPs coagulated sludge was still a hazardous waste that is difficult to degrade. Nitrogen-doped carbon composite (N-PSMPC) was prepared by carbonizing MPs coagulated aluminum sludge (MP-CA) doped with cheap urea in this study. Compared with the carbon material (PSMPC) produced by direct carbonization of MP-CA, N-PSMPC had a higher degree of defects, which could provide more active sites for peroxymonosulfate (PMS) activation. And then, the N-PSMPC was applied to the degradation of tetracycline hydrochloride (TC). The results showed that the N-PSMPC/PMS system exhibited excellent TC degradation performance at the pH range of 3-9, and the coexistence of CO<sub>3</sub><sup>2-</sup> and HCO<sub>3</sub><sup>-</sup> inhibited the TC degradation. Moreover, the graphite N, pyridine N and carbonyl group were identified as the primary catalytic active sites. Three TC degradation pathways were speculated based on the intermediates detected by liquid chromatography-mass spectrometry, and the degradation mechanism was dominated by the nonradical pathway. In addition, the analysis of TC and intermediates by toxicity assessment software showed that N-PSMPC/PMS system could mitigate the TC toxicity. This study will provide a novel approach for the resourceful utilization of MP-CA and provide technical support for the removal of MPs and TC in water.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120554"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2024.120554","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Coagulation could effectively remove microplastics (MPs). However, MPs coagulated sludge was still a hazardous waste that is difficult to degrade. Nitrogen-doped carbon composite (N-PSMPC) was prepared by carbonizing MPs coagulated aluminum sludge (MP-CA) doped with cheap urea in this study. Compared with the carbon material (PSMPC) produced by direct carbonization of MP-CA, N-PSMPC had a higher degree of defects, which could provide more active sites for peroxymonosulfate (PMS) activation. And then, the N-PSMPC was applied to the degradation of tetracycline hydrochloride (TC). The results showed that the N-PSMPC/PMS system exhibited excellent TC degradation performance at the pH range of 3-9, and the coexistence of CO32- and HCO3- inhibited the TC degradation. Moreover, the graphite N, pyridine N and carbonyl group were identified as the primary catalytic active sites. Three TC degradation pathways were speculated based on the intermediates detected by liquid chromatography-mass spectrometry, and the degradation mechanism was dominated by the nonradical pathway. In addition, the analysis of TC and intermediates by toxicity assessment software showed that N-PSMPC/PMS system could mitigate the TC toxicity. This study will provide a novel approach for the resourceful utilization of MP-CA and provide technical support for the removal of MPs and TC in water.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.