Claire King Teck Sieng, Chan Jun Yi, Taiki Yasui, Koji Yamashita, Rioki Sanda, Kensei Sakamoto, Yuki Kondo, Ko Suzuki, Shinnosuke Idogawa, Yu Seikoba, Rika Numano, Kowa Koida, Takeshi Kawano
{"title":"Magnetic assembly of microwires on a flexible substrate for minimally invasive electrophysiological recording.","authors":"Claire King Teck Sieng, Chan Jun Yi, Taiki Yasui, Koji Yamashita, Rioki Sanda, Kensei Sakamoto, Yuki Kondo, Ko Suzuki, Shinnosuke Idogawa, Yu Seikoba, Rika Numano, Kowa Koida, Takeshi Kawano","doi":"10.1016/j.bios.2024.116927","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the neural system in the brain requires the detection of signals from the tissue. Microscale electrodes enable high spatiotemporal neural recording, whereas traditional microelectrodes cause material and geometry mismatches between the electrode and the tissue, leading to injury and signal loss during recording. In this study, we propose a fabrication technique that uses magnetic force to facilitate assembly of vertical microscale wire-electrodes on a flexible substrate. Two-channel 15-μm-diameter and 400-μm-length nickel-microwire electrodes on a 5-μm-thick flexible parylene film are designed and fabricated. Impedance characteristics of these electrodes are <500 kΩ at 1 kHz, with output/input signal amplitude ratios of over 90%. In vivo neural recording in mice demonstrates that both local field potentials and action potentials are detected through each wire electrode, confirming the minimal invasiveness during the electrode penetration and through immunohistochemical tissue analysis.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"271 ","pages":"116927"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.bios.2024.116927","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the neural system in the brain requires the detection of signals from the tissue. Microscale electrodes enable high spatiotemporal neural recording, whereas traditional microelectrodes cause material and geometry mismatches between the electrode and the tissue, leading to injury and signal loss during recording. In this study, we propose a fabrication technique that uses magnetic force to facilitate assembly of vertical microscale wire-electrodes on a flexible substrate. Two-channel 15-μm-diameter and 400-μm-length nickel-microwire electrodes on a 5-μm-thick flexible parylene film are designed and fabricated. Impedance characteristics of these electrodes are <500 kΩ at 1 kHz, with output/input signal amplitude ratios of over 90%. In vivo neural recording in mice demonstrates that both local field potentials and action potentials are detected through each wire electrode, confirming the minimal invasiveness during the electrode penetration and through immunohistochemical tissue analysis.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.