Exploring bio-remediation strategies by a novel bacteria Micrococcus sp. strain HX in Cr(VI)-contaminated groundwater from long-term industrial polluted.

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Yu Xia, Yujuan Wen, Yuesuo Yang, Xiaoming Song, Yunlong Wang, Zhipeng Zhang
{"title":"Exploring bio-remediation strategies by a novel bacteria Micrococcus sp. strain HX in Cr(VI)-contaminated groundwater from long-term industrial polluted.","authors":"Yu Xia, Yujuan Wen, Yuesuo Yang, Xiaoming Song, Yunlong Wang, Zhipeng Zhang","doi":"10.1016/j.ecoenv.2024.117474","DOIUrl":null,"url":null,"abstract":"<p><p>Hexavalent chromium (Cr(VI)) has emerged as a contaminant of heavy metal, owing to its wide use in industry. This study focuses on elucidating the interaction between microbial communities and environmental parameters in Cr(VI)-contaminated groundwater near a factory in Henan Province, and evaluating the bio-remediation potential of microorganisms toward Cr(VI) reduction. The highest concentration of Cr(VI) in the groundwater is 208.08 mg/L. The dominant microbes were Proteobacteria and Bacteroidota, closely positively related to Cr(VI) and SO<sub>4</sub><sup>2-</sup><sub>.</sub> Many of these genus have been proven to be chromium tolerant or have the ability to reduce Cr(VI). Two strains, Micrococcus sp. HX and Bacillus sp. HX-2, were isolated from contaminated groundwater, and Micrococcus sp. HX was used for the first time to reduce Cr(VI) in groundwater. The reduced ability of HX reached 90.18 % at a Cr(VI) concentration of 100 mg/L, while HX-2 achieved a reduction capacity of 63.8 %. Micrococcus sp. HX shows the best reduction efficiency in alkaline environments (ph=8), which is close to the tannery industry wastewater. The reduction efficiency by Micrococcus sp. HX reached 67.26 % in groundwater samples (Cr(VI)= 26.08 mg/L). Transcriptome analyses revealed oxidoreductase activity, ATP binding and the NAD(P) binding region protein-related gene expression were up-regulated. Binding reduction experiments indicated that most of the Cr(III) was detected extracellular, which suggests that the reduction of Cr(VI) by HX was mainly extracellular enzyme-catalyzed.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"289 ","pages":"117474"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoenv.2024.117474","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hexavalent chromium (Cr(VI)) has emerged as a contaminant of heavy metal, owing to its wide use in industry. This study focuses on elucidating the interaction between microbial communities and environmental parameters in Cr(VI)-contaminated groundwater near a factory in Henan Province, and evaluating the bio-remediation potential of microorganisms toward Cr(VI) reduction. The highest concentration of Cr(VI) in the groundwater is 208.08 mg/L. The dominant microbes were Proteobacteria and Bacteroidota, closely positively related to Cr(VI) and SO42-. Many of these genus have been proven to be chromium tolerant or have the ability to reduce Cr(VI). Two strains, Micrococcus sp. HX and Bacillus sp. HX-2, were isolated from contaminated groundwater, and Micrococcus sp. HX was used for the first time to reduce Cr(VI) in groundwater. The reduced ability of HX reached 90.18 % at a Cr(VI) concentration of 100 mg/L, while HX-2 achieved a reduction capacity of 63.8 %. Micrococcus sp. HX shows the best reduction efficiency in alkaline environments (ph=8), which is close to the tannery industry wastewater. The reduction efficiency by Micrococcus sp. HX reached 67.26 % in groundwater samples (Cr(VI)= 26.08 mg/L). Transcriptome analyses revealed oxidoreductase activity, ATP binding and the NAD(P) binding region protein-related gene expression were up-regulated. Binding reduction experiments indicated that most of the Cr(III) was detected extracellular, which suggests that the reduction of Cr(VI) by HX was mainly extracellular enzyme-catalyzed.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信