MnO2 nanoparticles enhance the activity of the Zr-MOF matrix electrochemical sensor for efficiently identifying ultra-trace tetracycline residues in food
{"title":"MnO2 nanoparticles enhance the activity of the Zr-MOF matrix electrochemical sensor for efficiently identifying ultra-trace tetracycline residues in food","authors":"Siyu Tian, Jiahui Wang, Yu Jie, Zhu Ding, Xiao Wang, Jijiang Wang, Xiangyang Hou","doi":"10.1007/s00604-024-06854-8","DOIUrl":null,"url":null,"abstract":"<div><p> A novel nanobiosensor was constructed by in situ locating nanometer MnO<sub>2</sub> particles with controllable size and morphology in a Zr-MOF substrate to serve as an electrochemical probe. The synergistic effect of the two components, Zr-MOFs with high specific surface area and compatibility as a carrier for MnO<sub>2</sub>, resulted in improved electrochemical activity and excellent electrochemical identification performance for the MnO<sub>2</sub>@Zr-MOF/GCE biosensor. Under optimized experimental conditions and using CV and DPV technology, the biosensor showed a wide linear detection range (2–200 μM), a low detection limit (2.577 × 10<sup>−8</sup> M), a recovery range (106.26–115.01%), and maximum relative standard deviation (5.155) for tetracycline (TC) identification. The recognition mechanism of the sensor was investigated adopting Laviron adsorption theory. The applicability of the sensor was verified through practical measurements. Overall, the MnO<sub>2</sub> @Zr-MOF/GCE sensor possesses the advantages of fast analysis speed, high sensitivity, high selectivity, and simple operation, making it suitable for detecting trace amounts of TC in food.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06854-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel nanobiosensor was constructed by in situ locating nanometer MnO2 particles with controllable size and morphology in a Zr-MOF substrate to serve as an electrochemical probe. The synergistic effect of the two components, Zr-MOFs with high specific surface area and compatibility as a carrier for MnO2, resulted in improved electrochemical activity and excellent electrochemical identification performance for the MnO2@Zr-MOF/GCE biosensor. Under optimized experimental conditions and using CV and DPV technology, the biosensor showed a wide linear detection range (2–200 μM), a low detection limit (2.577 × 10−8 M), a recovery range (106.26–115.01%), and maximum relative standard deviation (5.155) for tetracycline (TC) identification. The recognition mechanism of the sensor was investigated adopting Laviron adsorption theory. The applicability of the sensor was verified through practical measurements. Overall, the MnO2 @Zr-MOF/GCE sensor possesses the advantages of fast analysis speed, high sensitivity, high selectivity, and simple operation, making it suitable for detecting trace amounts of TC in food.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.