{"title":"Structure Design and Performance Evaluation of Fibre Reinforced Composite Honeycombs: A Review","authors":"Ao Liu, Aoxin Wang, Qian Jiang, Yanan Jiao, Liwei Wu, Youhong Tang","doi":"10.1007/s10443-024-10281-6","DOIUrl":null,"url":null,"abstract":"<div><p>With the widespread application of sandwich composites, the performance of the core structure in the sandwich composites has received particular attention. As the typical representative of lightweight core structure, honeycombs have excellent designability and are widely used. The emerging fibre reinforced composite honeycombs have incomparable performance advantages over traditional metal or chopped fibre honeycombs. This means that design, manufacturing technologies and performance evaluation of composite honeycombs are important. In this review, grid, hexagonal, Kagome, corrugated and origami structure honeycombs and their associated manufacturing strategies have been summarised. In addition, more attention has been paid to textile structure composite honeycombs fabricated by weaving, braiding, or knitting techniques. Their mechanical performances have been extensively reviewed to clarify the relationship between structure and properties. Based on existing studies, the damage mechanisms of composite honeycomb structures are found to be insufficient; especially for the load-bearing mechanisms and predicting methods for honeycombs, which is a challenge for further development. This review hopes to inspire the innovation in fibre reinforced composite honeycombs from the view of structure design and performance evaluation.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 6","pages":"2019 - 2045"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-024-10281-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
With the widespread application of sandwich composites, the performance of the core structure in the sandwich composites has received particular attention. As the typical representative of lightweight core structure, honeycombs have excellent designability and are widely used. The emerging fibre reinforced composite honeycombs have incomparable performance advantages over traditional metal or chopped fibre honeycombs. This means that design, manufacturing technologies and performance evaluation of composite honeycombs are important. In this review, grid, hexagonal, Kagome, corrugated and origami structure honeycombs and their associated manufacturing strategies have been summarised. In addition, more attention has been paid to textile structure composite honeycombs fabricated by weaving, braiding, or knitting techniques. Their mechanical performances have been extensively reviewed to clarify the relationship between structure and properties. Based on existing studies, the damage mechanisms of composite honeycomb structures are found to be insufficient; especially for the load-bearing mechanisms and predicting methods for honeycombs, which is a challenge for further development. This review hopes to inspire the innovation in fibre reinforced composite honeycombs from the view of structure design and performance evaluation.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.