Rajaa M. Abdullah, Mohammed T. Obeed, Zainab J. Sweah, Hussain A. Badran, Riyadh Ch. Abul-Hail, Maytham Qabel Hamzah
{"title":"Self-Diffraction Characterization and Optical Limiting Behavior of the PAni/PVA Nanofiber","authors":"Rajaa M. Abdullah, Mohammed T. Obeed, Zainab J. Sweah, Hussain A. Badran, Riyadh Ch. Abul-Hail, Maytham Qabel Hamzah","doi":"10.1134/S0965545X24600960","DOIUrl":null,"url":null,"abstract":"<p>The current work presents the fabrication of polyaniline (PAni)/polyvinyl alcohol (PVA) nanofiber composites through electrospinning. The morphological properties of the sample evaluated by employing the field emission scanning electron microscope (FESEM) and the diameters of the samples are between 141 to 234 nm. The presence of both PVA and PAni in the nanofiber structure was evaluated with the aid of Fourier-Transformation Infrared Spectroscopy (FTIR). When a rifampicin-doped PVA film and a rifampicin-doped nanofiber PAni/PVA film were irradiated with a continuous wave laser beam at a wavelength of 532 nm, diffraction ring patterns (DFRPs) were seen. The nonlinear refractive index (NLDX) <span>\\({{n}_{2}}\\)</span>, was determined from the number of observed rings. Large value obtained of the order of 212.48 × l0<sup>–8</sup> cm<sup>2</sup>/W for PAni/PVA nanofiber composites. The change in the nonlinear refractive index <span>\\(\\Delta n\\)</span>, depends primarily on both the natural refractive index of the material and the NLDX, in which diffraction patterns play a major role in this change. In addition to that, the optical limiting) <span>\\({\\text{OPT}}\\)</span> (qualities were investigated. Within a solid PAni/PVA host, the dye shows of some impressive optical limiting features. It has been discovered that the mechanism responsible for the limitation of optical sensitivity is mostly of a thermal nature.</p>","PeriodicalId":738,"journal":{"name":"Polymer Science, Series A","volume":"66 3","pages":"348 - 362"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series A","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S0965545X24600960","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The current work presents the fabrication of polyaniline (PAni)/polyvinyl alcohol (PVA) nanofiber composites through electrospinning. The morphological properties of the sample evaluated by employing the field emission scanning electron microscope (FESEM) and the diameters of the samples are between 141 to 234 nm. The presence of both PVA and PAni in the nanofiber structure was evaluated with the aid of Fourier-Transformation Infrared Spectroscopy (FTIR). When a rifampicin-doped PVA film and a rifampicin-doped nanofiber PAni/PVA film were irradiated with a continuous wave laser beam at a wavelength of 532 nm, diffraction ring patterns (DFRPs) were seen. The nonlinear refractive index (NLDX) \({{n}_{2}}\), was determined from the number of observed rings. Large value obtained of the order of 212.48 × l0–8 cm2/W for PAni/PVA nanofiber composites. The change in the nonlinear refractive index \(\Delta n\), depends primarily on both the natural refractive index of the material and the NLDX, in which diffraction patterns play a major role in this change. In addition to that, the optical limiting) \({\text{OPT}}\) (qualities were investigated. Within a solid PAni/PVA host, the dye shows of some impressive optical limiting features. It has been discovered that the mechanism responsible for the limitation of optical sensitivity is mostly of a thermal nature.
期刊介绍:
Polymer Science, Series A is a journal published in collaboration with the Russian Academy of Sciences. Series A includes experimental and theoretical papers and reviews devoted to physicochemical studies of the structure and properties of polymers (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed. Online submission via Internet to the Series A, B, and C is available at http://polymsci.ru.