{"title":"Charge state distribution for 1.78–3.93 MeV/u Si projectiles passing through 10 [formula omitted] carbon foil","authors":"D.K. Swami, Sarvesh Kumar, S. Ojha, R.K. Karn","doi":"10.1016/j.radphyschem.2024.112462","DOIUrl":null,"url":null,"abstract":"The charge state distribution of Si projectiles with energies ranging from 1.78 to 3.93 MeV/u, and initial charge states <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msup><mml:mrow><mml:mi>S</mml:mi><mml:mi>i</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mo>+</mml:mo></mml:mrow></mml:msup><mml:mrow><mml:mo stretchy=\"true\">(</mml:mo><mml:mrow><mml:mi>p</mml:mi><mml:mo linebreak=\"badbreak\">=</mml:mo><mml:mn>4</mml:mn><mml:mo linebreak=\"badbreak\">−</mml:mo><mml:mn>10</mml:mn></mml:mrow><mml:mo stretchy=\"true\">)</mml:mo></mml:mrow></mml:mrow></mml:math>, was investigated after traversing a 10 <mml:math altimg=\"si1.svg\"><mml:mrow><mml:mi>μ</mml:mi><mml:mi>g</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">/</mml:mo><mml:msup><mml:mrow><mml:mi>c</mml:mi><mml:mi>m</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> carbon foil. This study was focused on determining the relevant parameters of the outgoing projectile such as the charge state distribution fraction (<mml:math altimg=\"si3.svg\"><mml:mrow><mml:msub><mml:mi>F</mml:mi><mml:mi>q</mml:mi></mml:msub></mml:mrow></mml:math>), the mean charge state <mml:math altimg=\"si4.svg\"><mml:mrow><mml:mo stretchy=\"true\">(</mml:mo><mml:msub><mml:mi>q</mml:mi><mml:mi>m</mml:mi></mml:msub><mml:mo stretchy=\"true\">)</mml:mo></mml:mrow></mml:math>, distribution width (w), and asymmetric/skewness parameter (s). These parameters were then compared with predictions from the Fermi gas model and ETACHA4. Notably, a significant disparity was observed between the experimental measurements and the theoretical calculations, with the latter overestimating the former. This overestimation was attributed to non-radiative electron capture (NREC) occurring at the exit surface, influenced by the wake and dynamic screening effects. Understanding and accurately determining the charge state distribution parameters hold immense importance in various scientific applications including in the field of plasma studies, these fractions of charge states are directly utilized to tackle complex problems and facilitate the detection of superheavy ions. Furthermore, these parameters play a vital role in enhancing our understanding of ion behavior, collision dynamics, and plasma characteristics. The insight observed from such parameters may be used to refine the theoretical models for accurate predictions and in planning of experiments involving ion interactions.","PeriodicalId":20861,"journal":{"name":"Radiation Physics and Chemistry","volume":"4 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.radphyschem.2024.112462","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The charge state distribution of Si projectiles with energies ranging from 1.78 to 3.93 MeV/u, and initial charge states Sip+(p=4−10), was investigated after traversing a 10 μg/cm2 carbon foil. This study was focused on determining the relevant parameters of the outgoing projectile such as the charge state distribution fraction (Fq), the mean charge state (qm), distribution width (w), and asymmetric/skewness parameter (s). These parameters were then compared with predictions from the Fermi gas model and ETACHA4. Notably, a significant disparity was observed between the experimental measurements and the theoretical calculations, with the latter overestimating the former. This overestimation was attributed to non-radiative electron capture (NREC) occurring at the exit surface, influenced by the wake and dynamic screening effects. Understanding and accurately determining the charge state distribution parameters hold immense importance in various scientific applications including in the field of plasma studies, these fractions of charge states are directly utilized to tackle complex problems and facilitate the detection of superheavy ions. Furthermore, these parameters play a vital role in enhancing our understanding of ion behavior, collision dynamics, and plasma characteristics. The insight observed from such parameters may be used to refine the theoretical models for accurate predictions and in planning of experiments involving ion interactions.
期刊介绍:
Radiation Physics and Chemistry is a multidisciplinary journal that provides a medium for publication of substantial and original papers, reviews, and short communications which focus on research and developments involving ionizing radiation in radiation physics, radiation chemistry and radiation processing.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. This could include papers that are very similar to previous publications, only with changed target substrates, employed materials, analyzed sites and experimental methods, report results without presenting new insights and/or hypothesis testing, or do not focus on the radiation effects.