Antoine Maillard, Afonso S. Bandeira, David Belius, Ivan Dokmanić, Shuta Nakajima
{"title":"Injectivity of ReLU networks: Perspectives from statistical physics","authors":"Antoine Maillard, Afonso S. Bandeira, David Belius, Ivan Dokmanić, Shuta Nakajima","doi":"10.1016/j.acha.2024.101736","DOIUrl":null,"url":null,"abstract":"When can the input of a ReLU neural network be inferred from its output? In other words, when is the network injective? We consider a single layer, <mml:math altimg=\"si1.svg\"><mml:mi>x</mml:mi><mml:mo stretchy=\"false\">↦</mml:mo><mml:mrow><mml:mi mathvariant=\"normal\">ReLU</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>W</mml:mi><mml:mi>x</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math>, with a random Gaussian <mml:math altimg=\"si2.svg\"><mml:mi>m</mml:mi><mml:mo>×</mml:mo><mml:mi>n</mml:mi></mml:math> matrix <ce:italic>W</ce:italic>, in a high-dimensional setting where <mml:math altimg=\"si3.svg\"><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>m</mml:mi><mml:mo stretchy=\"false\">→</mml:mo><mml:mo>∞</mml:mo></mml:math>. Recent work connects this problem to spherical integral geometry giving rise to a conjectured sharp injectivity threshold for <mml:math altimg=\"si4.svg\"><mml:mi>α</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mi>m</mml:mi><mml:mo stretchy=\"false\">/</mml:mo><mml:mi>n</mml:mi></mml:math> by studying the expected Euler characteristic of a certain random set. We adopt a different perspective and show that injectivity is equivalent to a property of the ground state of the spherical perceptron, an important spin glass model in statistical physics. By leveraging the (non-rigorous) replica symmetry-breaking theory, we derive analytical equations for the threshold whose solution is at odds with that from the Euler characteristic. Furthermore, we use Gordon's min–max theorem to prove that a replica-symmetric upper bound refutes the Euler characteristic prediction. Along the way we aim to give a tutorial-style introduction to key ideas from statistical physics in an effort to make the exposition accessible to a broad audience. Our analysis establishes a connection between spin glasses and integral geometry but leaves open the problem of explaining the discrepancies.","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"7 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.acha.2024.101736","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
When can the input of a ReLU neural network be inferred from its output? In other words, when is the network injective? We consider a single layer, x↦ReLU(Wx), with a random Gaussian m×n matrix W, in a high-dimensional setting where n,m→∞. Recent work connects this problem to spherical integral geometry giving rise to a conjectured sharp injectivity threshold for α=m/n by studying the expected Euler characteristic of a certain random set. We adopt a different perspective and show that injectivity is equivalent to a property of the ground state of the spherical perceptron, an important spin glass model in statistical physics. By leveraging the (non-rigorous) replica symmetry-breaking theory, we derive analytical equations for the threshold whose solution is at odds with that from the Euler characteristic. Furthermore, we use Gordon's min–max theorem to prove that a replica-symmetric upper bound refutes the Euler characteristic prediction. Along the way we aim to give a tutorial-style introduction to key ideas from statistical physics in an effort to make the exposition accessible to a broad audience. Our analysis establishes a connection between spin glasses and integral geometry but leaves open the problem of explaining the discrepancies.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.