Mutual and total mutual visibility in hypercube-like graphs

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Serafino Cicerone , Alessia Di Fonso , Gabriele Di Stefano , Alfredo Navarra , Francesco Piselli
{"title":"Mutual and total mutual visibility in hypercube-like graphs","authors":"Serafino Cicerone ,&nbsp;Alessia Di Fonso ,&nbsp;Gabriele Di Stefano ,&nbsp;Alfredo Navarra ,&nbsp;Francesco Piselli","doi":"10.1016/j.amc.2024.129216","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a graph and <span><math><mi>X</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Then, vertices <em>x</em> and <em>y</em> of <em>G</em> are <em>X</em>-visible if there exists a shortest <span><math><mi>x</mi><mo>,</mo><mi>y</mi></math></span>-path where no internal vertices belong to <em>X</em>. The set <em>X</em> is a mutual-visibility set of <em>G</em> if every two vertices of <em>X</em> are <em>X</em>-visible, while <em>X</em> is a total mutual-visibility set if any two vertices from <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are <em>X</em>-visible. The cardinality of a largest mutual-visibility set (resp. total mutual-visibility set) is the mutual-visibility number (resp. total mutual-visibility number) <span><math><mi>μ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> (resp. <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>) of <em>G</em>. It is known that computing <span><math><mi>μ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is an NP-complete problem, as well as <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In this paper, we study the (total) mutual-visibility in hypercube-like networks (namely, hypercubes, Fibonacci cubes, cube-connected cycles, and butterflies). Concerning computing <span><math><mi>μ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, we provide approximation algorithms for hypercubes, Fibonacci cubes and cube-connected cycles, while we give an exact formula for butterflies. Concerning computing <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> (in the literature, already studied in hypercubes), whereas we obtain exact formulae for both cube-connected cycles and butterflies.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"491 ","pages":"Article 129216"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324006775","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a graph and XV(G). Then, vertices x and y of G are X-visible if there exists a shortest x,y-path where no internal vertices belong to X. The set X is a mutual-visibility set of G if every two vertices of X are X-visible, while X is a total mutual-visibility set if any two vertices from V(G) are X-visible. The cardinality of a largest mutual-visibility set (resp. total mutual-visibility set) is the mutual-visibility number (resp. total mutual-visibility number) μ(G) (resp. μt(G)) of G. It is known that computing μ(G) is an NP-complete problem, as well as μt(G). In this paper, we study the (total) mutual-visibility in hypercube-like networks (namely, hypercubes, Fibonacci cubes, cube-connected cycles, and butterflies). Concerning computing μ(G), we provide approximation algorithms for hypercubes, Fibonacci cubes and cube-connected cycles, while we give an exact formula for butterflies. Concerning computing μt(G) (in the literature, already studied in hypercubes), whereas we obtain exact formulae for both cube-connected cycles and butterflies.
超立方体图中的互可见性和全互可见性
设G为图,X⊥V(G)。那么,如果存在一条最短的x,y路径且不存在内部顶点属于x,则G的顶点x和y是x可见的。如果x的每两个顶点都是x可见,则集合x是G的互可见集,如果V(G)中的任意两个顶点都是x可见集,则x是总互可见集。最大互可见性集的基数。总互可见性集)是互可见性数(例如:总互可视性数μ(G)μt(G))是一个np完全问题,μt(G)也是一个np完全问题。在本文中,我们研究了超立方体网络(即超立方体、斐波那契立方体、立方体连接环和蝴蝶)中的(总)互可见性。关于μ(G)的计算,我们给出了超立方体、斐波那契立方体和立方连通循环的近似算法,同时给出了蝴蝶的精确计算公式。关于μt(G)的计算(在文献中,已经在超立方体中研究过),而我们得到了立方体连接循环和蝴蝶的精确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信