Spatial variability of groundwater flow fields caused by nonstationary random input parameter processes

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL
Ching-Min Chang, Chuen-Fa Ni, Chi-Ping Lin, I-Hsian Lee
{"title":"Spatial variability of groundwater flow fields caused by nonstationary random input parameter processes","authors":"Ching-Min Chang, Chuen-Fa Ni, Chi-Ping Lin, I-Hsian Lee","doi":"10.1016/j.jhydrol.2024.132477","DOIUrl":null,"url":null,"abstract":"Much of the stochastic analysis of flow fields in heterogeneous formations in the literature treats the random input parameters that appear in the stochastic differential equation for the groundwater flow perturbations can be characterized by a covariance function. However, it may be that the covariance functions of the input parameters cannot be identified with the limited field data or that the covariance functions of the parameters do not exist at the regional scale. It is therefore necessary to generalize the existing stochastic theories for the quantification of groundwater flow variability to the case of nonstationarity of input parameter processes, which is the goal of the present work. This work deals with the problem of steady-state flow in heterogeneous confined aquifers with variable thickness, where the spatial variability of hydraulic conductivity and aquifer thickness are considered as intrinsic (nonstationary) random input processes. The introduction of the intrinsic spectral representations for the log conductivity and log aquifer thickness leads to an intrinsic process for the perturbation of the depth-averaged head, and therefore nonstationary semivariograms of the depth-averaged hydraulic head and the integrated specific discharge are developed to quantify the variability of the flow fields. The stochastic theories developed here improve the quantification of the variability of flow fields in natural confined aquifers. The analysis clearly demonstrates that the unbounded increase of the semivariograms of depth-averaged head and integrated discharge with separation distance indicates that quantifying the variability of depth-averaged head and integrated discharge using the assumption of second-order stationarity for the input parameters may lead to a significant underestimation of the variability of head and discharge for the case of variation of random input parameters characterized by a linear semivariogram model. The parameters that appear in the linear semivariograms of the logarithmic conductivity and the logarithmic thickness of the aquifer play a role in increasing the variability of the depth-averaged hydraulic head and thus the variability of the integrated discharge.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"68 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2024.132477","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Much of the stochastic analysis of flow fields in heterogeneous formations in the literature treats the random input parameters that appear in the stochastic differential equation for the groundwater flow perturbations can be characterized by a covariance function. However, it may be that the covariance functions of the input parameters cannot be identified with the limited field data or that the covariance functions of the parameters do not exist at the regional scale. It is therefore necessary to generalize the existing stochastic theories for the quantification of groundwater flow variability to the case of nonstationarity of input parameter processes, which is the goal of the present work. This work deals with the problem of steady-state flow in heterogeneous confined aquifers with variable thickness, where the spatial variability of hydraulic conductivity and aquifer thickness are considered as intrinsic (nonstationary) random input processes. The introduction of the intrinsic spectral representations for the log conductivity and log aquifer thickness leads to an intrinsic process for the perturbation of the depth-averaged head, and therefore nonstationary semivariograms of the depth-averaged hydraulic head and the integrated specific discharge are developed to quantify the variability of the flow fields. The stochastic theories developed here improve the quantification of the variability of flow fields in natural confined aquifers. The analysis clearly demonstrates that the unbounded increase of the semivariograms of depth-averaged head and integrated discharge with separation distance indicates that quantifying the variability of depth-averaged head and integrated discharge using the assumption of second-order stationarity for the input parameters may lead to a significant underestimation of the variability of head and discharge for the case of variation of random input parameters characterized by a linear semivariogram model. The parameters that appear in the linear semivariograms of the logarithmic conductivity and the logarithmic thickness of the aquifer play a role in increasing the variability of the depth-averaged hydraulic head and thus the variability of the integrated discharge.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信