{"title":"A unit series–parallel unsaturated soil electrical conductivity model considering interconnections between pores","authors":"Ganglie Yuan, Ailan Che, Chao Su","doi":"10.1016/j.jhydrol.2024.132456","DOIUrl":null,"url":null,"abstract":"For the potential application of electrical resistivity measurements in hydrogeological investigations, the knowledge of soil electrical conductivity mechanism with moisture content variation is the key issue. The impact of interconnections between pores and weak connection to physical processes were the two limitations for unsaturated soil electrical conductivity research. In this work, we introduced the concept of equivalent conductive pathway to analyze tortuosity. Based on media series–parallel analysis, a unit series–parallel unsaturated soil electrical conductivity model considering interconnections between pores was established, in which parameters with its own physical meaning. To verify the accuracy of the proposed model, soil resistivity test with moisture content variation was conducted. Soil electrical conductivity was predicted, which was compared with results from test and previous models. The results indicate that our model is expected to produce better results than the previous models. Overcoming the limitations of weak connection to physical processes in the empirical model, the error of soil resistivity was significantly reduced when the impact of interconnections between pores was considered. The average error of the proposed model for clay and sand was 30.6% and 17.4%, respectively, compared to 72.6% and 48.2% for the model that ignored the interconnections between pores. The findings of this study could provide a reference for hydrogeological investigations, such as levee leakage detection.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"121 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2024.132456","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
For the potential application of electrical resistivity measurements in hydrogeological investigations, the knowledge of soil electrical conductivity mechanism with moisture content variation is the key issue. The impact of interconnections between pores and weak connection to physical processes were the two limitations for unsaturated soil electrical conductivity research. In this work, we introduced the concept of equivalent conductive pathway to analyze tortuosity. Based on media series–parallel analysis, a unit series–parallel unsaturated soil electrical conductivity model considering interconnections between pores was established, in which parameters with its own physical meaning. To verify the accuracy of the proposed model, soil resistivity test with moisture content variation was conducted. Soil electrical conductivity was predicted, which was compared with results from test and previous models. The results indicate that our model is expected to produce better results than the previous models. Overcoming the limitations of weak connection to physical processes in the empirical model, the error of soil resistivity was significantly reduced when the impact of interconnections between pores was considered. The average error of the proposed model for clay and sand was 30.6% and 17.4%, respectively, compared to 72.6% and 48.2% for the model that ignored the interconnections between pores. The findings of this study could provide a reference for hydrogeological investigations, such as levee leakage detection.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.