Hong Wang, Fubao Sun, Yao Feng, Tingting Wang, Wenbin Liu
{"title":"Intensification of hourly and Small watershed flooding with rising temperatures","authors":"Hong Wang, Fubao Sun, Yao Feng, Tingting Wang, Wenbin Liu","doi":"10.1016/j.jhydrol.2024.132444","DOIUrl":null,"url":null,"abstract":"Global warming has increased intensity of extreme precipitation events, and it is expected that the intensity of resulting floods will also rise, especially as intensified short-duration extreme precipitation may exacerbate dangerous flash floods. However, quantitative evidence remains limited, and existing research tends to focus on large river basins. Here we analyzed and compared how hourly extreme precipitation and streamflow in the Yangtze River Basin and its tributaries respond to temperature changes using scaling analysis. Our findings reveal a consistent temperature response across different spatial scales in the basins: hourly extreme precipitation increases at approximately 1.75 times the rate of daily precipitation. Furthermore, floods show a positive response to rising temperatures, but the degree of this response is more consistent in the mainstem than it is in the tributaries. Both daily and hourly extreme streamflow in the mainstem increases by about 7 % (7.47 % and 6.18 % respectively) for every 1 °C increase in temperature. Notably, the increase in hourly extreme streamflow is less pronounced than that in hourly precipitation intensity, likely moderated by reservoirs and the various factors influencing flood formation. In contrast, hourly extreme streamflow in most tributaries increases by 14 % or more. These findings highlight that hourly extreme precipitation and flood responses in smaller watersheds significantly exceed thermodynamic expectations, increasing flash flood risks and posing challenges for flood mitigation.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"88 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2024.132444","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Global warming has increased intensity of extreme precipitation events, and it is expected that the intensity of resulting floods will also rise, especially as intensified short-duration extreme precipitation may exacerbate dangerous flash floods. However, quantitative evidence remains limited, and existing research tends to focus on large river basins. Here we analyzed and compared how hourly extreme precipitation and streamflow in the Yangtze River Basin and its tributaries respond to temperature changes using scaling analysis. Our findings reveal a consistent temperature response across different spatial scales in the basins: hourly extreme precipitation increases at approximately 1.75 times the rate of daily precipitation. Furthermore, floods show a positive response to rising temperatures, but the degree of this response is more consistent in the mainstem than it is in the tributaries. Both daily and hourly extreme streamflow in the mainstem increases by about 7 % (7.47 % and 6.18 % respectively) for every 1 °C increase in temperature. Notably, the increase in hourly extreme streamflow is less pronounced than that in hourly precipitation intensity, likely moderated by reservoirs and the various factors influencing flood formation. In contrast, hourly extreme streamflow in most tributaries increases by 14 % or more. These findings highlight that hourly extreme precipitation and flood responses in smaller watersheds significantly exceed thermodynamic expectations, increasing flash flood risks and posing challenges for flood mitigation.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.