How does landscape vegetation configuration regulate local channel initiation in a rapidly expanding micro-tidal system?

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL
Dawei Wang, Junhong Bai, Chuanhui Gu, Olivier Gourgue, Jean-Philippe Belliard, Liyue Cui, Yinghai Ke, Liming Xue, Lixiang Wen, Stijn Temmerman
{"title":"How does landscape vegetation configuration regulate local channel initiation in a rapidly expanding micro-tidal system?","authors":"Dawei Wang, Junhong Bai, Chuanhui Gu, Olivier Gourgue, Jean-Philippe Belliard, Liyue Cui, Yinghai Ke, Liming Xue, Lixiang Wen, Stijn Temmerman","doi":"10.1016/j.jhydrol.2024.132473","DOIUrl":null,"url":null,"abstract":"Tidal channels are essential morphological structures that mediate hydrological connectivity and maintain coastal resilience. Previous studies on vegetation-induced channel development primarily focused on the stages of initial establishment or later elaboration, characterized by slow and localized changes. However, the impact of rapid shifts in landscape vegetation on the initiation of tidal channels, such as main or tributary channels, remains poorly understood, particularly in micro-tidal system. In this study, we investigated this relationship through satellite imagery analysis and biogeomorphic modeling of a rapidly expanding micro-tidal marsh in the Yellow River Delta, China, which has experienced an invasion by <ce:italic>Spartina alterniflora</ce:italic> over the past decade. The satellite imagery demonstrated that <ce:italic>Spartina alterniflora</ce:italic> invasion has increased drainage density and reduced overland flow path length. Our modeling results showed that local flow acceleration between vegetation patches was insufficient to rapidly initiate channels under micro-tidal conditions. As the patchy marsh coalesced and expanded into a contiguously vegetated marsh, it altered landscape-scale flow patterns, diverting from homogenous platform flow to concentrated channel flow. This shift prominently promoted the initiation of tributary channels in the landward marsh zone. The simulated scenarios of vegetation removal highlighted a marked increase in flow divergence from adjacent platforms due to changes in landscape-scale vegetation configuration. This alteration in flow pattern amplified local hydrodynamics, consequently intensifying local channel incision. Our findings emphasize that the channel initiation is significantly influenced by landscape-scale vegetation configuration under micro-tidal conditions, beyond the localized interactions between plants and flow.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"18 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2024.132473","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Tidal channels are essential morphological structures that mediate hydrological connectivity and maintain coastal resilience. Previous studies on vegetation-induced channel development primarily focused on the stages of initial establishment or later elaboration, characterized by slow and localized changes. However, the impact of rapid shifts in landscape vegetation on the initiation of tidal channels, such as main or tributary channels, remains poorly understood, particularly in micro-tidal system. In this study, we investigated this relationship through satellite imagery analysis and biogeomorphic modeling of a rapidly expanding micro-tidal marsh in the Yellow River Delta, China, which has experienced an invasion by Spartina alterniflora over the past decade. The satellite imagery demonstrated that Spartina alterniflora invasion has increased drainage density and reduced overland flow path length. Our modeling results showed that local flow acceleration between vegetation patches was insufficient to rapidly initiate channels under micro-tidal conditions. As the patchy marsh coalesced and expanded into a contiguously vegetated marsh, it altered landscape-scale flow patterns, diverting from homogenous platform flow to concentrated channel flow. This shift prominently promoted the initiation of tributary channels in the landward marsh zone. The simulated scenarios of vegetation removal highlighted a marked increase in flow divergence from adjacent platforms due to changes in landscape-scale vegetation configuration. This alteration in flow pattern amplified local hydrodynamics, consequently intensifying local channel incision. Our findings emphasize that the channel initiation is significantly influenced by landscape-scale vegetation configuration under micro-tidal conditions, beyond the localized interactions between plants and flow.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信