{"title":"High-risk driving factors of rain-induced flooding hazard events on the Loess Plateau and its ecological subregions","authors":"Wenting Zhao, Xinhan Zhang, Juying Jiao, Bo Yang, Xiaowu Ma, Qian Xu, Xiqin Yan, Qi Ling, Jinshi Jian","doi":"10.1016/j.jhydrol.2024.132475","DOIUrl":null,"url":null,"abstract":"Rain-induced flooding hazards are prevalent on the Loess Plateau (LP). Descriptive statistics, kernel density estimation, and geographical detector methods were used to explore the spatial and temporal distribution, driving factors, and their high-risk intervals of rain-induced flooding hazard events (RFHEs) on the LP and whether they differ across the entire LP and its ecological subregions. The findings showed that 91 RFHEs occurred mainly in the south-central LP during 2004–2020. The daily rainfall, surface relief amplitude (SRA), elevation, normalized difference vegetation index (NDVI), soil texture, and population were identified as the driving factors of RFHEs on the LP. However, the driving factors of RFHEs in the Sandy and Agricultural Irrigation Regions (Subregion C), and Earth-rocky Mountainous Region and River Valley Plain Region (Subregion D) all had an added soil texture and population factor compared to the entire LP, but they lacked NDVI and SRA factors, respectively. The driving factors for the Loess Plateau Gully Region (Subregion A) lacked SRA and soil texture factors. The Loess Hilly and Gully Region (Subregion B) lacked NDVI, soil texture, and population factors. There were also differences between high-risk intervals on the LP and its subregions. The high-risk daily rainfall for the entire LP was 64.5 mm, while it was 64.5, 82.3, 14.7, and 50.0 mm for subregions A, B, C, and D, respectively. Therefore, adopting uniform standards on the LP may over-estimate or under-estimate RFHE occurrence in ecological subregions. These findings contribute to guiding decision-makers involved in ecosystem management and hazard prevention.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"10 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2024.132475","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Rain-induced flooding hazards are prevalent on the Loess Plateau (LP). Descriptive statistics, kernel density estimation, and geographical detector methods were used to explore the spatial and temporal distribution, driving factors, and their high-risk intervals of rain-induced flooding hazard events (RFHEs) on the LP and whether they differ across the entire LP and its ecological subregions. The findings showed that 91 RFHEs occurred mainly in the south-central LP during 2004–2020. The daily rainfall, surface relief amplitude (SRA), elevation, normalized difference vegetation index (NDVI), soil texture, and population were identified as the driving factors of RFHEs on the LP. However, the driving factors of RFHEs in the Sandy and Agricultural Irrigation Regions (Subregion C), and Earth-rocky Mountainous Region and River Valley Plain Region (Subregion D) all had an added soil texture and population factor compared to the entire LP, but they lacked NDVI and SRA factors, respectively. The driving factors for the Loess Plateau Gully Region (Subregion A) lacked SRA and soil texture factors. The Loess Hilly and Gully Region (Subregion B) lacked NDVI, soil texture, and population factors. There were also differences between high-risk intervals on the LP and its subregions. The high-risk daily rainfall for the entire LP was 64.5 mm, while it was 64.5, 82.3, 14.7, and 50.0 mm for subregions A, B, C, and D, respectively. Therefore, adopting uniform standards on the LP may over-estimate or under-estimate RFHE occurrence in ecological subregions. These findings contribute to guiding decision-makers involved in ecosystem management and hazard prevention.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.