Research on underwater polarization distribution reconstruction method for partial occlusion environment

IF 2.3 3区 物理与天体物理 Q2 OPTICS
Ying Ma, Fang Kong, Yinjing Guo, Yaohuang Ruan, Chunxiao Du, Xiaohan Guo, Di Zhang
{"title":"Research on underwater polarization distribution reconstruction method for partial occlusion environment","authors":"Ying Ma, Fang Kong, Yinjing Guo, Yaohuang Ruan, Chunxiao Du, Xiaohan Guo, Di Zhang","doi":"10.1016/j.jqsrt.2024.109288","DOIUrl":null,"url":null,"abstract":"Underwater polarization imaging technology has important application prospects in marine scientific research, seabed resource exploration, seabed topography drawing, underwater archaeology and other fields. However, underwater polarization images are subject to degradation in image quality during the acquisition process due to occlusion by water grass, fish, and the absorption of water particles in the ocean. In order to enhance the quality of polarization images and restore distorted information, In this paper, an underwater rotating polarization imaging detection system is designed, which can capture sky polarized light about 10 m in the ocean. At the same time, an image reconstruction algorithm based on intra-frame prediction is proposed. The algorithm utilizes the temporal and spatial correlations of the angle of polarization image sequence to reconstruct distorted the angle of polarization images by predicting the current frame. Specifically, the proposed algorithm uses the surrounding information to predict the angle of polarization image of the occlusion area, and optimizes it through SATD (Sum of Absolute Transformed Differences) to obtain a better prediction residual image. Finally, the prediction residual image is combined with the prediction results to obtain the final reconstructed the angle of polarization image to achieve the purpose of navigation. Simulation and experimental results show that the proposed algorithm can adapt to partially occluded visual field environment, remove random occlusion and restore image detail information. Compared with the image before repair, the image information after repair is improved by about 65 %.","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"140 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/j.jqsrt.2024.109288","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater polarization imaging technology has important application prospects in marine scientific research, seabed resource exploration, seabed topography drawing, underwater archaeology and other fields. However, underwater polarization images are subject to degradation in image quality during the acquisition process due to occlusion by water grass, fish, and the absorption of water particles in the ocean. In order to enhance the quality of polarization images and restore distorted information, In this paper, an underwater rotating polarization imaging detection system is designed, which can capture sky polarized light about 10 m in the ocean. At the same time, an image reconstruction algorithm based on intra-frame prediction is proposed. The algorithm utilizes the temporal and spatial correlations of the angle of polarization image sequence to reconstruct distorted the angle of polarization images by predicting the current frame. Specifically, the proposed algorithm uses the surrounding information to predict the angle of polarization image of the occlusion area, and optimizes it through SATD (Sum of Absolute Transformed Differences) to obtain a better prediction residual image. Finally, the prediction residual image is combined with the prediction results to obtain the final reconstructed the angle of polarization image to achieve the purpose of navigation. Simulation and experimental results show that the proposed algorithm can adapt to partially occluded visual field environment, remove random occlusion and restore image detail information. Compared with the image before repair, the image information after repair is improved by about 65 %.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信