Understanding hydration reactions, mechanical properties, thermal expansion, and organic interfacial interactions of calcium sulfate hydrates from the atomic scale
IF 10.9 1区 工程技术Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Ratan K. Mishra, Samir Darouich, Pieter J. in 't Veld, Robert J. Flatt, Hendrik Heinz
{"title":"Understanding hydration reactions, mechanical properties, thermal expansion, and organic interfacial interactions of calcium sulfate hydrates from the atomic scale","authors":"Ratan K. Mishra, Samir Darouich, Pieter J. in 't Veld, Robert J. Flatt, Hendrik Heinz","doi":"10.1016/j.cemconres.2024.107740","DOIUrl":null,"url":null,"abstract":"Calcium sulfates such as anhydrite, hemihydrate, and gypsum are used extensively in building materials, wall board, and biomaterials. The correlation between nanoscale structure and macroscopic properties, however, remains incompletely understood. We employed molecular dynamics simulations with the Interface Force Field (IFF) to examine sensitive hydration reactions, anisotropic thermal and mechanical properties, as well as (hkl) specific adsorption of organic modifiers. Computed thermal transitions between calcium sulfate phases, directional coefficients of thermal expansion, and directional mechanical properties agree exceptionally well with partially known experimental measurements, provide missing data and mechanistic understanding at the atomic scale. Polymeric naphthalene sulfonate-formaldehyde condensates exhibit strong, selective adsorption to the hemihydrate (001) surface. The polymer conformations and facet-specific binding affinities explain the delayed hydration of calcium sulfate hemihydrate to gypsum. The simulation methods can be applied to predict crystal growth and properties of sulfate-containing multiphase materials from atoms to the micrometer scale.","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"60 1","pages":""},"PeriodicalIF":10.9000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cemconres.2024.107740","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Calcium sulfates such as anhydrite, hemihydrate, and gypsum are used extensively in building materials, wall board, and biomaterials. The correlation between nanoscale structure and macroscopic properties, however, remains incompletely understood. We employed molecular dynamics simulations with the Interface Force Field (IFF) to examine sensitive hydration reactions, anisotropic thermal and mechanical properties, as well as (hkl) specific adsorption of organic modifiers. Computed thermal transitions between calcium sulfate phases, directional coefficients of thermal expansion, and directional mechanical properties agree exceptionally well with partially known experimental measurements, provide missing data and mechanistic understanding at the atomic scale. Polymeric naphthalene sulfonate-formaldehyde condensates exhibit strong, selective adsorption to the hemihydrate (001) surface. The polymer conformations and facet-specific binding affinities explain the delayed hydration of calcium sulfate hemihydrate to gypsum. The simulation methods can be applied to predict crystal growth and properties of sulfate-containing multiphase materials from atoms to the micrometer scale.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.