Loss of carbohydrate sulfotransferase 6 function leads to macular corneal dystrophy phenotypes and skeletal defects in zebrafish.

Merve Basol, Esra Ersoz-Gulseven, Helin Ozaktas, Sibel Kalyoncu, Canan Asli Utine, Gulcin Cakan-Akdogan
{"title":"Loss of carbohydrate sulfotransferase 6 function leads to macular corneal dystrophy phenotypes and skeletal defects in zebrafish.","authors":"Merve Basol, Esra Ersoz-Gulseven, Helin Ozaktas, Sibel Kalyoncu, Canan Asli Utine, Gulcin Cakan-Akdogan","doi":"10.1111/febs.17337","DOIUrl":null,"url":null,"abstract":"<p><p>The carbohydrate sulfotransferase 6 (chst6) gene is linked to macular corneal dystrophy (MCD), a rare disease that leads to bilateral blindness due to the accumulation of opaque aggregates in the corneal stroma. chst6 encodes for a keratan sulfate proteoglycan (KSPG) specific sulfotransferase. MCD patients lose sulfated KSPGs (cKS) in the cornea and the serum. The significance of serum cKS loss has not been understood. Zebrafish cornea structure is similar to that of humans and it contains high levels of sulfated cKS in the stroma. Here, zebrafish chst6 is shown to be expressed in the cornea and head structures of the embryos. An animal model of MCD is developed by generating chst6 mutant animals with CRISPR/Cas9-mediated gene editing. The dramatic decrease in cKS epitopes in the mutants was shown with ELISA and immunofluorescence. Morphological defects or alterations of jaw cartilage were detected in a minor fraction of the mutant larvae. Loss of cKS epitopes and morphological defects was fully rescued with wild-type chst6. Mutant adult zebrafish displayed all clinical manifestations of MCD, while a fraction also displayed jaw and skeleton defects. Opaque accumulations formed in the eye, which were alcian blue positive. Loss of cKS in the corneal stroma and a decrease in corneal thickness were shown. Interestingly, alteration of transforming growth factor beta-induced (BIGH3) expression which was not described in patients was also observed. This is the first report of an MCD model in a genetically tractable organism, providing a preclinical model and insight into the importance of KSPG sulfation for proper skeletal morphogenesis.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The carbohydrate sulfotransferase 6 (chst6) gene is linked to macular corneal dystrophy (MCD), a rare disease that leads to bilateral blindness due to the accumulation of opaque aggregates in the corneal stroma. chst6 encodes for a keratan sulfate proteoglycan (KSPG) specific sulfotransferase. MCD patients lose sulfated KSPGs (cKS) in the cornea and the serum. The significance of serum cKS loss has not been understood. Zebrafish cornea structure is similar to that of humans and it contains high levels of sulfated cKS in the stroma. Here, zebrafish chst6 is shown to be expressed in the cornea and head structures of the embryos. An animal model of MCD is developed by generating chst6 mutant animals with CRISPR/Cas9-mediated gene editing. The dramatic decrease in cKS epitopes in the mutants was shown with ELISA and immunofluorescence. Morphological defects or alterations of jaw cartilage were detected in a minor fraction of the mutant larvae. Loss of cKS epitopes and morphological defects was fully rescued with wild-type chst6. Mutant adult zebrafish displayed all clinical manifestations of MCD, while a fraction also displayed jaw and skeleton defects. Opaque accumulations formed in the eye, which were alcian blue positive. Loss of cKS in the corneal stroma and a decrease in corneal thickness were shown. Interestingly, alteration of transforming growth factor beta-induced (BIGH3) expression which was not described in patients was also observed. This is the first report of an MCD model in a genetically tractable organism, providing a preclinical model and insight into the importance of KSPG sulfation for proper skeletal morphogenesis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信