Action mechanism of iron on the carbon dioxide emission reduction and methyl methacrylate generation during anhydrous cleaning process for waste glass recovery.
Baojia Qin, Chunmu Wang, Jiahua Lu, Jie Zhu, Jujun Ruan
{"title":"Action mechanism of iron on the carbon dioxide emission reduction and methyl methacrylate generation during anhydrous cleaning process for waste glass recovery.","authors":"Baojia Qin, Chunmu Wang, Jiahua Lu, Jie Zhu, Jujun Ruan","doi":"10.1016/j.wasman.2024.11.042","DOIUrl":null,"url":null,"abstract":"<p><p>Reducing CO<sub>2</sub> and pollutant emissions is a global priority. Waste glass recycling is more effective in achieving this goal compared to producing new glass. A crucial step in waste glass recycling is removing adhesive impurities from the glass surface. Hydraulic cleaning generates organic wastewater, leading to its gradual replacement in China by anhydrous cleaning, a novel technology that avoids wastewater generation. However, CO<sub>2</sub> and pollutant methyl methacrylate are still produced during anhydrous cleaning, and their formation mechanisms were previously unclear. This study explores these mechanisms and finds that the existence of glass interface increases the length of C≡N bond of binder by 0.239 Å, which promotes the bond's fracture and the formation of methyl methacrylate in exhaust gas. Iron in waste glass increases the length of C = O bond by 0.263 Å, facilitating the bond's fracture and reducing the proportions of methyl methacrylate and CO<sub>2</sub> by 7.31 % and 18.01 %, respectively. Therefore, it is recommended to modify the existing recycling process of waste glass by arranging iron removal after anhydrous cleaning to reduce CO<sub>2</sub> and methyl methacrylate production. This paper is the first time to report the mechanisms and approaches for reducing CO<sub>2</sub> emission and controlling gaseous pollutant in waste glass recycling.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"193 ","pages":"62-69"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2024.11.042","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reducing CO2 and pollutant emissions is a global priority. Waste glass recycling is more effective in achieving this goal compared to producing new glass. A crucial step in waste glass recycling is removing adhesive impurities from the glass surface. Hydraulic cleaning generates organic wastewater, leading to its gradual replacement in China by anhydrous cleaning, a novel technology that avoids wastewater generation. However, CO2 and pollutant methyl methacrylate are still produced during anhydrous cleaning, and their formation mechanisms were previously unclear. This study explores these mechanisms and finds that the existence of glass interface increases the length of C≡N bond of binder by 0.239 Å, which promotes the bond's fracture and the formation of methyl methacrylate in exhaust gas. Iron in waste glass increases the length of C = O bond by 0.263 Å, facilitating the bond's fracture and reducing the proportions of methyl methacrylate and CO2 by 7.31 % and 18.01 %, respectively. Therefore, it is recommended to modify the existing recycling process of waste glass by arranging iron removal after anhydrous cleaning to reduce CO2 and methyl methacrylate production. This paper is the first time to report the mechanisms and approaches for reducing CO2 emission and controlling gaseous pollutant in waste glass recycling.
期刊介绍:
Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes.
Scope:
Addresses solid wastes in both industrialized and economically developing countries
Covers various types of solid wastes, including:
Municipal (e.g., residential, institutional, commercial, light industrial)
Agricultural
Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)