Binding of Sulfates and Water to Monovalent Cations.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2024-12-19 Epub Date: 2024-12-06 DOI:10.1021/acs.jpca.4c05454
Mark J Stevens, Susan B Rempe
{"title":"Binding of Sulfates and Water to Monovalent Cations.","authors":"Mark J Stevens, Susan B Rempe","doi":"10.1021/acs.jpca.4c05454","DOIUrl":null,"url":null,"abstract":"<p><p>The binding of the sulfate ligand group to monovalent cations in the presence of water is important for many systems. To understand the structure and energetics of sulfate complexes, we use density functional theory to study ethyl sulfate binding to the monovalent cations Li<sup>+</sup>, Na<sup>+</sup>, and K<sup>+</sup>, and to water. The free energies of binding and optimal structures are calculated for a range of the number of ethyl sulfates and waters. Without water, the most optimal structure for all the cations is bidentate binding by two ethyl sulfates, yielding a 4-fold coordination. With water, the lowest free energy structures also have two ethyl sulfates, but the coordination varies with cations. For complexes with water, the four oxygen atoms in the sulfate group enable multiple binding geometries for the cations and for hydrogen bonding with water. Many of these geometries differ in free energy by only a small amount (1-2 kcal/mol), meaning there will be multiple binding configurations in bulk solution. In comparison to the optimal structures for binding to the carboxylate group, there is more variation for binding to the sulfate group as a function of cation type and the number of waters. The polarization of the atoms is significant and varies among the sulfate oxygen atoms. The water oxygen charge is often larger than that of sulfate oxygen, which plays a role in the preference for monodentate ligand binding to cations in the presence of water.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"10785-10795"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c05454","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The binding of the sulfate ligand group to monovalent cations in the presence of water is important for many systems. To understand the structure and energetics of sulfate complexes, we use density functional theory to study ethyl sulfate binding to the monovalent cations Li+, Na+, and K+, and to water. The free energies of binding and optimal structures are calculated for a range of the number of ethyl sulfates and waters. Without water, the most optimal structure for all the cations is bidentate binding by two ethyl sulfates, yielding a 4-fold coordination. With water, the lowest free energy structures also have two ethyl sulfates, but the coordination varies with cations. For complexes with water, the four oxygen atoms in the sulfate group enable multiple binding geometries for the cations and for hydrogen bonding with water. Many of these geometries differ in free energy by only a small amount (1-2 kcal/mol), meaning there will be multiple binding configurations in bulk solution. In comparison to the optimal structures for binding to the carboxylate group, there is more variation for binding to the sulfate group as a function of cation type and the number of waters. The polarization of the atoms is significant and varies among the sulfate oxygen atoms. The water oxygen charge is often larger than that of sulfate oxygen, which plays a role in the preference for monodentate ligand binding to cations in the presence of water.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信