Super-resolution imaging of the neuronal cytoskeleton

Ciarán Butler-Hallissey, Christophe Leterrier
{"title":"Super-resolution imaging of the neuronal cytoskeleton","authors":"Ciarán Butler-Hallissey, Christophe Leterrier","doi":"10.1038/s44303-024-00054-y","DOIUrl":null,"url":null,"abstract":"The complexity of the brain organization and the unique architecture of neurons have motivated neuroscientists to stay at the forefront of cellular microscopy and rapidly take advantage of technical developments in this field. Among these developments, super-resolution microscopy has transformed our understanding of neurobiology by allowing us to image identified macromolecular scaffolds and complexes directly in cells. Super-resolution microscopy approaches have thus provided key insights into the organization and functions of the neuronal cytoskeleton and its unique nanostructures. These insights are the focus of our review, where we attempt to provide a panorama of super-resolution microscopy applications to the study of the neuronal cytoskeleton, delineating the progress they have made possible and the current challenges they meet.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00054-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44303-024-00054-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The complexity of the brain organization and the unique architecture of neurons have motivated neuroscientists to stay at the forefront of cellular microscopy and rapidly take advantage of technical developments in this field. Among these developments, super-resolution microscopy has transformed our understanding of neurobiology by allowing us to image identified macromolecular scaffolds and complexes directly in cells. Super-resolution microscopy approaches have thus provided key insights into the organization and functions of the neuronal cytoskeleton and its unique nanostructures. These insights are the focus of our review, where we attempt to provide a panorama of super-resolution microscopy applications to the study of the neuronal cytoskeleton, delineating the progress they have made possible and the current challenges they meet.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信