First-Principles Study of Superlubricity of Two-Dimensional Graphene/ WS2 Heterostructures

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Dongwei Liang, Cheng Zhang, Chengyu Shen, Guangteng Cao, Ningbo Liao, Miao Zhang
{"title":"First-Principles Study of Superlubricity of Two-Dimensional Graphene/ WS2 Heterostructures","authors":"Dongwei Liang,&nbsp;Cheng Zhang,&nbsp;Chengyu Shen,&nbsp;Guangteng Cao,&nbsp;Ningbo Liao,&nbsp;Miao Zhang","doi":"10.1007/s11249-024-01949-y","DOIUrl":null,"url":null,"abstract":"<div><p>Layered two-dimensional nanomaterials such as graphene and WS<sub>2</sub>, possess superlubricity properties and thus offer a promising solution to mitigate friction and wear in micro-electromechanical systems. In this study, the atomic friction properties of graphene/graphene, WS<sub>2</sub>/WS<sub>2</sub>, and graphene/WS<sub>2</sub> bilayer heterostructure systems were examined through density functional theory simulations. Results indicated that the friction strength of the graphene/WS<sub>2</sub> bilayer heterostructure system was lower than that of the graphene/graphene and WS<sub>2</sub>/WS<sub>2</sub> systems. Specifically, the graphene/WS<sub>2</sub> bilayer heterostructure system demonstrated ultra-low friction coefficients ranging from 0.0006 to 0.0096, resulting in friction strengths in the range of 10^<sup>−3</sup> nN. Furthermore, the heightened electrostatic repulsion and smooth potential energy fluctuation helped reduce friction, validating the superlubricity performance of the graphene/WS<sub>2</sub> heterostructure system.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"73 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01949-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Layered two-dimensional nanomaterials such as graphene and WS2, possess superlubricity properties and thus offer a promising solution to mitigate friction and wear in micro-electromechanical systems. In this study, the atomic friction properties of graphene/graphene, WS2/WS2, and graphene/WS2 bilayer heterostructure systems were examined through density functional theory simulations. Results indicated that the friction strength of the graphene/WS2 bilayer heterostructure system was lower than that of the graphene/graphene and WS2/WS2 systems. Specifically, the graphene/WS2 bilayer heterostructure system demonstrated ultra-low friction coefficients ranging from 0.0006 to 0.0096, resulting in friction strengths in the range of 10^−3 nN. Furthermore, the heightened electrostatic repulsion and smooth potential energy fluctuation helped reduce friction, validating the superlubricity performance of the graphene/WS2 heterostructure system.

二维石墨烯/ WS2异质结构超润滑性第一性原理研究
层状二维纳米材料,如石墨烯和WS2,具有超润滑性能,因此为减轻微机电系统中的摩擦和磨损提供了一个有前途的解决方案。本研究通过密度泛函理论模拟研究了石墨烯/石墨烯、WS2/WS2和石墨烯/WS2双层异质结构体系的原子摩擦性能。结果表明,石墨烯/WS2双层异质结构体系的摩擦强度低于石墨烯/石墨烯和WS2/WS2体系。具体而言,石墨烯/WS2双层异质结构体系的摩擦系数在0.0006至0.0096之间,摩擦强度在10^−3 nN之间。此外,增强的静电斥力和平滑的势能波动有助于减少摩擦,验证了石墨烯/WS2异质结构体系的超润滑性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信