{"title":"Antibacterial and anti-biofilm efficacy of 1,4-naphthoquinone against Chromobacterium violaceum: an in vitro and in silico investigation","authors":"Samreen, Iqbal Ahmad","doi":"10.1007/s00203-024-04209-8","DOIUrl":null,"url":null,"abstract":"<div><p>Antimicrobial resistance (AMR) is an urgent worldwide health concern, requiring the exploration for novel antimicrobial interventions. A Gram-negative bacterium, <i>Chromobacterium violaceum</i>, synthesizes quorum-sensing-regulated violacein pigment, develops resilient biofilms, and is often used for the screening of anti-infective drugs. The aim of this work is to assess the antibacterial and antibiofilm properties of three polyphenols: 1,4-naphthoquinone, caffeic acid, and piperine. The determination of antibacterial activity was conducted by the agar overlay and broth microdilution techniques. Analysis of membrane rupture was conducted by crystal violet uptake and β-galactosidase assay. Inhibition of biofilm was evaluated using a 96-well microtiter plate assay. Biofilm structures were visualized using light, scanning electron microscopy (SEM), and confocal laser scanning electron microscopy (CLSM). Among the phytochemicals, 1,4-naphthoquinone exhibited the highest antibacterial action (25 mm zone of inhibition). The minimum inhibitory concentration of 1,4-naphthoquinone was determined to be 405 µM. Outer and inner membrane permeability was enhanced by 52.01% and 1.28 absorbance, respectively. Violacein production was reduced by 74.85%, and biofilm formation was suppressed by 63.25% at sub-MIC levels (202.5 µM). Microscopic analyses confirmed reduced adhesion on surfaces. Hemolytic activity of 1,4-naphthoquinone showed a concentration-dependent effect, with 32.16% haemolysis at 202.5 µM. Molecular docking revealed significant interactions of 1,4-naphthoquinone with DNA gyrase followed by CviR. These findings highlight 1,4-naphthoquinone’s potent antibacterial efficacy against <i>C. violaceum</i>, proposing its use as a surface coating agent to prevent biofilm formation on medical devices, thereby offering a promising strategy to combat bacterial infections.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04209-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial resistance (AMR) is an urgent worldwide health concern, requiring the exploration for novel antimicrobial interventions. A Gram-negative bacterium, Chromobacterium violaceum, synthesizes quorum-sensing-regulated violacein pigment, develops resilient biofilms, and is often used for the screening of anti-infective drugs. The aim of this work is to assess the antibacterial and antibiofilm properties of three polyphenols: 1,4-naphthoquinone, caffeic acid, and piperine. The determination of antibacterial activity was conducted by the agar overlay and broth microdilution techniques. Analysis of membrane rupture was conducted by crystal violet uptake and β-galactosidase assay. Inhibition of biofilm was evaluated using a 96-well microtiter plate assay. Biofilm structures were visualized using light, scanning electron microscopy (SEM), and confocal laser scanning electron microscopy (CLSM). Among the phytochemicals, 1,4-naphthoquinone exhibited the highest antibacterial action (25 mm zone of inhibition). The minimum inhibitory concentration of 1,4-naphthoquinone was determined to be 405 µM. Outer and inner membrane permeability was enhanced by 52.01% and 1.28 absorbance, respectively. Violacein production was reduced by 74.85%, and biofilm formation was suppressed by 63.25% at sub-MIC levels (202.5 µM). Microscopic analyses confirmed reduced adhesion on surfaces. Hemolytic activity of 1,4-naphthoquinone showed a concentration-dependent effect, with 32.16% haemolysis at 202.5 µM. Molecular docking revealed significant interactions of 1,4-naphthoquinone with DNA gyrase followed by CviR. These findings highlight 1,4-naphthoquinone’s potent antibacterial efficacy against C. violaceum, proposing its use as a surface coating agent to prevent biofilm formation on medical devices, thereby offering a promising strategy to combat bacterial infections.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.