Great Iruoghene Edo, Winifred Ndudi, Ali B. M. Ali, Emad Yousif, Khalid Zainulabdeen, Priscillia Nkem Onyibe, Helen Avuokerie Ekokotu, Endurance Fegor Isoje, Ufuoma Augustina Igbuku, Arthur Efeoghene Athan Essaghah, Dina S. Ahmed, Huzaifa Umar, Dilber Uzun Ozsahin
{"title":"Poly(vinyl chloride) (PVC): an updated review of its properties, polymerization, modification, recycling, and applications","authors":"Great Iruoghene Edo, Winifred Ndudi, Ali B. M. Ali, Emad Yousif, Khalid Zainulabdeen, Priscillia Nkem Onyibe, Helen Avuokerie Ekokotu, Endurance Fegor Isoje, Ufuoma Augustina Igbuku, Arthur Efeoghene Athan Essaghah, Dina S. Ahmed, Huzaifa Umar, Dilber Uzun Ozsahin","doi":"10.1007/s10853-024-10471-4","DOIUrl":null,"url":null,"abstract":"<div><p>Poly(vinyl chloride) (PVC) has been a fascinating subject for polymer science research. Its characteristics are heightened by its inherent structural faults resulting from direct manufacturing (by free-radical polymerization), which also cause its thermal instability. Some of the fundamental limiting features of PVC have been suggested to be alleviated by improved chemistry during PVC synthesis, in addition to the use of both inorganic and organic thermal stabilizers. The characteristics, characterization, modification, recycling, and various applications of PVC are all examined in this paper along with the past and most recent research discoveries. It has been suggested that some of the fundamental limiting properties of PVC can be lessened by applying both inorganic and organic thermal stabilizers in conjunction with improved chemistry during PVC manufacture. Numerous ongoing studies have expanded this chemistry, primarily through the chemical changes of this polymeric substance. The chemical modification of PVC employing various materials as an active modifying agent is described in this work. The latter comprised grafting polymerizations, nucleophilic radicals, substitutions, PVC modifications, and removal or dehydrochlorination. This perspective addresses the main PVC reactivity trends and provides an overview of PVC functionalization while examining the environmental implications of PVC via the prism of chemical recycling. Through extensive ongoing research, this chemistry has been expanded, primarily through the chemical changes of this polymeric substance. To improve its photo-stability properties, expand the applications of poly(vinyl chloride) (PVC), and investigate PVC-related phenomena, numerous chemical modifications have been introduced to PVC.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 47","pages":"21605 - 21648"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10471-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Poly(vinyl chloride) (PVC) has been a fascinating subject for polymer science research. Its characteristics are heightened by its inherent structural faults resulting from direct manufacturing (by free-radical polymerization), which also cause its thermal instability. Some of the fundamental limiting features of PVC have been suggested to be alleviated by improved chemistry during PVC synthesis, in addition to the use of both inorganic and organic thermal stabilizers. The characteristics, characterization, modification, recycling, and various applications of PVC are all examined in this paper along with the past and most recent research discoveries. It has been suggested that some of the fundamental limiting properties of PVC can be lessened by applying both inorganic and organic thermal stabilizers in conjunction with improved chemistry during PVC manufacture. Numerous ongoing studies have expanded this chemistry, primarily through the chemical changes of this polymeric substance. The chemical modification of PVC employing various materials as an active modifying agent is described in this work. The latter comprised grafting polymerizations, nucleophilic radicals, substitutions, PVC modifications, and removal or dehydrochlorination. This perspective addresses the main PVC reactivity trends and provides an overview of PVC functionalization while examining the environmental implications of PVC via the prism of chemical recycling. Through extensive ongoing research, this chemistry has been expanded, primarily through the chemical changes of this polymeric substance. To improve its photo-stability properties, expand the applications of poly(vinyl chloride) (PVC), and investigate PVC-related phenomena, numerous chemical modifications have been introduced to PVC.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.