On formation and breakup of jets during droplet impact on oscillating substrates

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Aditya Potnis, Abhishek Saha
{"title":"On formation and breakup of jets during droplet impact on oscillating substrates","authors":"Aditya Potnis,&nbsp;Abhishek Saha","doi":"10.1007/s00348-024-03911-z","DOIUrl":null,"url":null,"abstract":"<div><p>Droplet impact on substrates is the cornerstone of several processes relevant to many industrial applications. Imposing substrate oscillation modifies the impact dynamics and can, therefore, be used to control the ensuing heat, mass, and energy transfer between the substrate and the impacting droplet. Previous research has shown that substrate oscillation strongly influences the spreading behavior of the droplet. In this study, we extend this understanding to examine how substrate oscillations can further modulate the retraction dynamics of the droplet, consequently affecting its long-term behavior, with a particular focus on induced jetting and subsequent breakup. We systematically examine the breakup of jets formed by the recoiling droplet through experimental investigations across a range of oscillation frequencies and amplitudes. Our findings reveal two distinct jet breakup modes: early and late, each governed by different time scales. Subsequently, we present a mechanistic description of the jetting process. Furthermore, we derive a simple scaling analysis based on energy balance to identify the critical condition required for jet breakup. Finally, we compare the experimental data with the scaling analyses to show its efficacy.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03911-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03911-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Droplet impact on substrates is the cornerstone of several processes relevant to many industrial applications. Imposing substrate oscillation modifies the impact dynamics and can, therefore, be used to control the ensuing heat, mass, and energy transfer between the substrate and the impacting droplet. Previous research has shown that substrate oscillation strongly influences the spreading behavior of the droplet. In this study, we extend this understanding to examine how substrate oscillations can further modulate the retraction dynamics of the droplet, consequently affecting its long-term behavior, with a particular focus on induced jetting and subsequent breakup. We systematically examine the breakup of jets formed by the recoiling droplet through experimental investigations across a range of oscillation frequencies and amplitudes. Our findings reveal two distinct jet breakup modes: early and late, each governed by different time scales. Subsequently, we present a mechanistic description of the jetting process. Furthermore, we derive a simple scaling analysis based on energy balance to identify the critical condition required for jet breakup. Finally, we compare the experimental data with the scaling analyses to show its efficacy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信