Bandwidth-Scalable Digital Predistortion Using Multigroup Aggregation Neural Network for PAs

0 ENGINEERING, ELECTRICAL & ELECTRONIC
Yijie Tang;Jun Peng;Songbai He;Fei You;Xinyu Wang;Tianyang Zhong;Yuchen Bian;Bo Pang
{"title":"Bandwidth-Scalable Digital Predistortion Using Multigroup Aggregation Neural Network for PAs","authors":"Yijie Tang;Jun Peng;Songbai He;Fei You;Xinyu Wang;Tianyang Zhong;Yuchen Bian;Bo Pang","doi":"10.1109/LMWT.2024.3464849","DOIUrl":null,"url":null,"abstract":"A multigroup aggregation neural network (MGANN) model for bandwidth-scalable digital predistortion (DPD) is proposed. The MGANN model introduces a multinetwork structure based on the characteristics of neural networks (NNs) to broaden the bandwidth application range and eliminate the updates online. The proposed structure combines the input layer and the first hidden layer into multiple networks retrieved by means of inertia coefficients. In addition, to improve modeling accuracy, a new input vector is used by introducing the product term of I/Q components and the amplitude of the signal. The experimental results indicate that the proposed model can significantly improve the adjacent channel power ratio (ACPR) within the range of 20–200M with an average of 12.1 dB compared with traditional GMP models when using a fixed set of parameters.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"34 12","pages":"1387-1390"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10706984/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A multigroup aggregation neural network (MGANN) model for bandwidth-scalable digital predistortion (DPD) is proposed. The MGANN model introduces a multinetwork structure based on the characteristics of neural networks (NNs) to broaden the bandwidth application range and eliminate the updates online. The proposed structure combines the input layer and the first hidden layer into multiple networks retrieved by means of inertia coefficients. In addition, to improve modeling accuracy, a new input vector is used by introducing the product term of I/Q components and the amplitude of the signal. The experimental results indicate that the proposed model can significantly improve the adjacent channel power ratio (ACPR) within the range of 20–200M with an average of 12.1 dB compared with traditional GMP models when using a fixed set of parameters.
基于多群聚合神经网络的宽带可扩展数字预失真算法
提出了一种基于多群聚合神经网络的带宽可扩展数字预失真(DPD)模型。MGANN模型引入了一种基于神经网络特性的多网络结构,拓宽了带宽应用范围,消除了在线更新。该结构将输入层和第一隐层组合成多个网络,通过惯性系数进行检索。此外,为了提高建模精度,通过引入I/Q分量与信号幅度的乘积项,采用了新的输入向量。实验结果表明,在固定参数下,与传统的GMP模型相比,该模型在20 ~ 200m范围内可显著提高相邻信道功率比(ACPR),平均提高12.1 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信