{"title":"MetaTinyML: End-to-End Metareasoning Framework for TinyML Platforms","authors":"Mozhgan Navardi;Edward Humes;Tinoosh Mohsenin","doi":"10.1109/LES.2024.3446948","DOIUrl":null,"url":null,"abstract":"Efficiently deploying deep neural networks on resource-limited embedded systems is crucial to meet real-time and power consumption requirements. Utilizing metareasoning as a higher-level controller along with tiny machine learning (TinyML) can enhance energy efficiency and reduce latency on such systems by overseeing available resources. This study introduces MetaTinyML, a comprehensive metareasoning framework for self-guided navigation on TinyML platforms. The framework adapts its decision-making process by factoring in environmental changes to select the most suitable algorithms for the current scenario. Implementation of MetaTinyML on an NVIDIA Jetson Nano 4-GB system integrated with a Jetbot ground vehicle demonstrated up to 50% power consumption enhancement. View a video demonstration of the MetaTinyML framework at: Video.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"393-396"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10779983/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Efficiently deploying deep neural networks on resource-limited embedded systems is crucial to meet real-time and power consumption requirements. Utilizing metareasoning as a higher-level controller along with tiny machine learning (TinyML) can enhance energy efficiency and reduce latency on such systems by overseeing available resources. This study introduces MetaTinyML, a comprehensive metareasoning framework for self-guided navigation on TinyML platforms. The framework adapts its decision-making process by factoring in environmental changes to select the most suitable algorithms for the current scenario. Implementation of MetaTinyML on an NVIDIA Jetson Nano 4-GB system integrated with a Jetbot ground vehicle demonstrated up to 50% power consumption enhancement. View a video demonstration of the MetaTinyML framework at: Video.
期刊介绍:
The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.