Benedict Jun Ma , Shenle Pan , Bipan Zou , Yong-Hong Kuo , George Q. Huang
{"title":"Operating policies for robotic cellular warehousing systems","authors":"Benedict Jun Ma , Shenle Pan , Bipan Zou , Yong-Hong Kuo , George Q. Huang","doi":"10.1016/j.tre.2024.103875","DOIUrl":null,"url":null,"abstract":"<div><div>Robotic Cellular Warehousing Systems provide an innovative robot-to-goods picking approach designed to improve robot transportation efficiency, where robots move to pick items and transport the picked items to workstations. In this study, we investigate the optimal operating policies for such a system by comparing two picking strategies (pick-while-sort and pick-then-sort) and three robot-to-workstation assignment rules (random, closest, and dedicated). Specifically, we develop dedicated closed queuing networks to model robot-to-goods picking and estimate warehouse throughput under different policies through single-class and multi-class models. The effectiveness of these analytical models is validated through numerical simulations, with an average gap of 5.53% between simulation and analytical results. Additionally, we conduct a series of numerical experiments to examine the impact of various factors on warehouse performance, including the numbers of robots and workstations, robot capacity, order size, and sorting efficiency. Based on the experimental findings, we provide managerial implications that offer insights into optimizing resource allocation and system configuration. These insights enable warehouse managers to improve operational efficiency and overall performance.</div></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"194 ","pages":"Article 103875"},"PeriodicalIF":8.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554524004666","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Robotic Cellular Warehousing Systems provide an innovative robot-to-goods picking approach designed to improve robot transportation efficiency, where robots move to pick items and transport the picked items to workstations. In this study, we investigate the optimal operating policies for such a system by comparing two picking strategies (pick-while-sort and pick-then-sort) and three robot-to-workstation assignment rules (random, closest, and dedicated). Specifically, we develop dedicated closed queuing networks to model robot-to-goods picking and estimate warehouse throughput under different policies through single-class and multi-class models. The effectiveness of these analytical models is validated through numerical simulations, with an average gap of 5.53% between simulation and analytical results. Additionally, we conduct a series of numerical experiments to examine the impact of various factors on warehouse performance, including the numbers of robots and workstations, robot capacity, order size, and sorting efficiency. Based on the experimental findings, we provide managerial implications that offer insights into optimizing resource allocation and system configuration. These insights enable warehouse managers to improve operational efficiency and overall performance.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.