Moment tensors for small earthquakes and the stress regime in the mid-Atlantic United States

IF 2.7 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Kyle Homman, Andrew Nyblade
{"title":"Moment tensors for small earthquakes and the stress regime in the mid-Atlantic United States","authors":"Kyle Homman, Andrew Nyblade","doi":"10.1016/j.tecto.2024.230582","DOIUrl":null,"url":null,"abstract":"Focal mechanisms for small magnitude earthquakes (M ∼ 1.3–4.1) in the mid-Atlantic region of the United States have been determined using a double-couple moment tensor inversion procedure. The 26 new focal mechanisms obtained, when combined with previously published mechanisms, show a pattern of reverse faulting in the easternmost portion of the study area and strike-slip faulting in the west, consistent with previous studies. The change in focal mechanisms from east to west helps to constrain the geographic location of the east-west transition in the stress regime to a NE-SW area within central Pennsylvania within proximity of the Allegheny Front. Stress inversions performed to constrain variations in the stress state across the region show that the maximum compressive stress varies only slightly, but that the near-vertical stress is the minimum compressive stress in the east and transitions to the intermediate compressive stress in the west, as expected for an east-west transition in reverse to strike-slip faulting. Analysis of driving forces causing the stress change suggests that tectonic terrane structure, glacial isostatic adjustment, and changes in gravitational potential energy have little effect on the stress field in this region, leaving the interaction of sublithospheric mantle flow with the eastern edge of the Laurentian cratonic lithosphere beneath central Pennsylvania as a primary explanation. The cratonic lithospheric keel may cause a deflection in mantle flow, thereby changing the stress field enough so that the magnitude of the vertical stress in relation to the minimum horizontal stress results in strike-slip as opposed to reverse faulting.","PeriodicalId":22257,"journal":{"name":"Tectonophysics","volume":"37 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.tecto.2024.230582","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Focal mechanisms for small magnitude earthquakes (M ∼ 1.3–4.1) in the mid-Atlantic region of the United States have been determined using a double-couple moment tensor inversion procedure. The 26 new focal mechanisms obtained, when combined with previously published mechanisms, show a pattern of reverse faulting in the easternmost portion of the study area and strike-slip faulting in the west, consistent with previous studies. The change in focal mechanisms from east to west helps to constrain the geographic location of the east-west transition in the stress regime to a NE-SW area within central Pennsylvania within proximity of the Allegheny Front. Stress inversions performed to constrain variations in the stress state across the region show that the maximum compressive stress varies only slightly, but that the near-vertical stress is the minimum compressive stress in the east and transitions to the intermediate compressive stress in the west, as expected for an east-west transition in reverse to strike-slip faulting. Analysis of driving forces causing the stress change suggests that tectonic terrane structure, glacial isostatic adjustment, and changes in gravitational potential energy have little effect on the stress field in this region, leaving the interaction of sublithospheric mantle flow with the eastern edge of the Laurentian cratonic lithosphere beneath central Pennsylvania as a primary explanation. The cratonic lithospheric keel may cause a deflection in mantle flow, thereby changing the stress field enough so that the magnitude of the vertical stress in relation to the minimum horizontal stress results in strike-slip as opposed to reverse faulting.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tectonophysics
Tectonophysics 地学-地球化学与地球物理
CiteScore
4.90
自引率
6.90%
发文量
300
审稿时长
6 months
期刊介绍: The prime focus of Tectonophysics will be high-impact original research and reviews in the fields of kinematics, structure, composition, and dynamics of the solid arth at all scales. Tectonophysics particularly encourages submission of papers based on the integration of a multitude of geophysical, geological, geochemical, geodynamic, and geotectonic methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信