A five-fold twin structure copper for enhanced electrocatalytic nitrogen reduction to sustainable ammonia

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2024-12-07 DOI:10.1002/aic.18654
Xiaoqing Yan, Ying Zhao, Yuzhe Zhang, Bowen Wang, Hanhong Fan, Honghui Ou, Xuelan Hou, Qizhong Huang, Huagui Hu, Guidong Yang
{"title":"A five-fold twin structure copper for enhanced electrocatalytic nitrogen reduction to sustainable ammonia","authors":"Xiaoqing Yan, Ying Zhao, Yuzhe Zhang, Bowen Wang, Hanhong Fan, Honghui Ou, Xuelan Hou, Qizhong Huang, Huagui Hu, Guidong Yang","doi":"10.1002/aic.18654","DOIUrl":null,"url":null,"abstract":"Utilizing N₂ from the air and water for the electrocatalytic nitrogen reduction reaction shows promise for NH₃ synthesis under mild conditions. However, the chemical stability of N₂ and the thermodynamic limitations of NH₃ synthesis hinder its effectiveness. Herein, we integrated a specially designed Cu nanowire catalyst with a five-fold twin structure (T-CuNW) into an electrocatalytic system, combining electrocatalytic nitrogen reduction with nonthermal plasma-assisted N₂ activation. This work achieved an NH₃ yield of 45 mg·mg<sub>cat.</sub><sup>−1</sup>·h<sup>−1</sup> and a Faradaic efficiency of over 95% at −0.5 V versus RHE after a 90-h stability test. In situ characterization revealed that the T-CuNW's twin structure plays a crucial role for the generation of a large quantity of H<sub>ads</sub>, essential for the hydrogenation of nitrate intermediates, particularly nitrite (NO₂<sup>−</sup>). This enhanced hydrogenation process significantly contributes to the high performance of the ammonia synthesis system.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"34 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18654","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing N₂ from the air and water for the electrocatalytic nitrogen reduction reaction shows promise for NH₃ synthesis under mild conditions. However, the chemical stability of N₂ and the thermodynamic limitations of NH₃ synthesis hinder its effectiveness. Herein, we integrated a specially designed Cu nanowire catalyst with a five-fold twin structure (T-CuNW) into an electrocatalytic system, combining electrocatalytic nitrogen reduction with nonthermal plasma-assisted N₂ activation. This work achieved an NH₃ yield of 45 mg·mgcat.−1·h−1 and a Faradaic efficiency of over 95% at −0.5 V versus RHE after a 90-h stability test. In situ characterization revealed that the T-CuNW's twin structure plays a crucial role for the generation of a large quantity of Hads, essential for the hydrogenation of nitrate intermediates, particularly nitrite (NO₂). This enhanced hydrogenation process significantly contributes to the high performance of the ammonia synthesis system.
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
文献相关原料
公司名称
产品信息
阿拉丁
Ammonium persulfate
阿拉丁
Sodium citrate
阿拉丁
Sodium nitroferricyanide dihydrate
阿拉丁
Salicylic acid
阿拉丁
Sodium hypochlorite solution
阿拉丁
Sodium nitroferricyanide dihydrate (C5FeN6Na2O?2H2O)
阿拉丁
Salicylic acid (C7H6O3)
阿拉丁
Octadecyl amine (C18H39N)
阿拉丁
Sodium hypochlorite solution (NaClO)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信