{"title":"Differential Impact of Wildfire and Rice Straw Ash on the Skin Microbiota of Rana dybowskii Adults and Tadpoles","authors":"Xin-zhou Long, Ming-da Xu, Wen-jing Dong, Xiu-mei Yang, Li-yong Cui, Qing Tong","doi":"10.1016/j.envpol.2024.125470","DOIUrl":null,"url":null,"abstract":"Global warming has intensified severe weather conditions and increased the frequency of wildfires, posing significant threats to ecosystems. Moreover, rice straw ash, a byproduct of human agricultural activities, represents an environmental stressor that can further impact these vulnerable ecosystems. These changes particularly impact sensitive species and microorganisms, yet limited research has explored the effects of wildfire ash and agricultural byproducts, such as rice straw ash, on amphibians. This study aims to investigate the effects of both wildfire and rice straw ashes on the skin microbiota of <em>Rana dybowskii</em> tadpoles and adult frogs, using ash aqueous extracts (AEAs). While alpha diversity showed significant variation among tadpoles, it remained stable in adult frogs. Beta diversity analyses revealed distinct microbiota compositions, especially between control and wildfire ash-treated tadpoles. Linear discriminant analysis (LDA) Effect Size (LEfSe) analysis indicated that different ash treatments led to the enrichment of specific microbiota, reflecting the complex effects of environmental changes on amphibian skin microbiota. Specific bacterial enrichments were associated with each treatment group, and phenotypic analysis highlighted bacterial traits, including Aerobic, Anaerobic, Potentially_Pathogenic, and Stress_Tolerant, providing insights into ecological adaptations. Therefore, contrasts wildfire and rice straw ash treatments distinctly influence amphibian skin microbiota and associated bacterial traits. Our findings emphasize the impact of agricultural and wildfire ash on amphibian skin microbiota, offering key ecological insights into the challenges posed by global environmental changes.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"1 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2024.125470","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Global warming has intensified severe weather conditions and increased the frequency of wildfires, posing significant threats to ecosystems. Moreover, rice straw ash, a byproduct of human agricultural activities, represents an environmental stressor that can further impact these vulnerable ecosystems. These changes particularly impact sensitive species and microorganisms, yet limited research has explored the effects of wildfire ash and agricultural byproducts, such as rice straw ash, on amphibians. This study aims to investigate the effects of both wildfire and rice straw ashes on the skin microbiota of Rana dybowskii tadpoles and adult frogs, using ash aqueous extracts (AEAs). While alpha diversity showed significant variation among tadpoles, it remained stable in adult frogs. Beta diversity analyses revealed distinct microbiota compositions, especially between control and wildfire ash-treated tadpoles. Linear discriminant analysis (LDA) Effect Size (LEfSe) analysis indicated that different ash treatments led to the enrichment of specific microbiota, reflecting the complex effects of environmental changes on amphibian skin microbiota. Specific bacterial enrichments were associated with each treatment group, and phenotypic analysis highlighted bacterial traits, including Aerobic, Anaerobic, Potentially_Pathogenic, and Stress_Tolerant, providing insights into ecological adaptations. Therefore, contrasts wildfire and rice straw ash treatments distinctly influence amphibian skin microbiota and associated bacterial traits. Our findings emphasize the impact of agricultural and wildfire ash on amphibian skin microbiota, offering key ecological insights into the challenges posed by global environmental changes.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.