Genome-modified Caenorhabditis elegans expressing the human cytochrome P450 (CYP1A1 and CYP1A2) pathway: An experimental model for environmental carcinogenesis and pharmacological research

IF 10.3 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Yuzhi Chen, Yang Jiang, Nirujah Sarvanantharajah, Orapan Apirakkan, Mengqi Yang, Alena Milcova, Jan Topinka, Vincenzo Abbate, Volker M. Arlt, Stephen R. Stürzenbaum
{"title":"Genome-modified Caenorhabditis elegans expressing the human cytochrome P450 (CYP1A1 and CYP1A2) pathway: An experimental model for environmental carcinogenesis and pharmacological research","authors":"Yuzhi Chen, Yang Jiang, Nirujah Sarvanantharajah, Orapan Apirakkan, Mengqi Yang, Alena Milcova, Jan Topinka, Vincenzo Abbate, Volker M. Arlt, Stephen R. Stürzenbaum","doi":"10.1016/j.envint.2024.109187","DOIUrl":null,"url":null,"abstract":"Polycyclic aromatic hydrocarbons (PAHs), including the Group 1 human carcinogen benzo[<em>a</em>]pyrene (BaP), are produced by the incomplete combustion of organic matter and thus are present in tobacco smoke, charbroiled food and diesel exhaust. The nematode <em>Caenorhabditis elegans</em> is an established model organism, however it lacks the genetic components of the classical mammalian cytochrome P450 (CYP)-mediated BaP-diol-epoxide metabolism pathway. We therefore introduced human CYP1A1 or CYP1A2 together with human epoxide hydrolase (EPHX) into the worm genome by Mos1-mediated Single Copy Insertion (MosSCI) and evaluated their response to BaP exposure via toxicological endpoints. Compared to wild-type control, CYP-humanised worms were characterised by an increase in pharyngeal pumping rate and a decrease in volumetric surface area. Furthermore, BaP exposure reduced reproductive performance, as reflected in smaller brood size, which coincided with the downregulation of the nematode-specific major sperm protein as determined by transcriptomics (RNAseq). BaP-mediated reproductive toxicity was exacerbated in CYP-humanised worms at higher exposure levels. Collagen-related genes were downregulated in BaP-exposed animals, which correlate with the reduction in volumetric size. Whole genome DNA sequencing revealed a higher frequency of T &gt; G (A &gt; C) base substitution mutations in worms expressing human CYP1A1;EPHX which aligned with an increase in DNA adducts identified via an ELISA method (but not classical <sup>32</sup>P-postlabelling). Overall, the CYP-humanised worms provided new insights into the value of genome-optimised invertebrate models by identifying the benefits and limitations within the context of the (3Rs) concept which aims to replace, reduce and refine the use of animals in research.","PeriodicalId":308,"journal":{"name":"Environment International","volume":"9 1","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envint.2024.109187","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Polycyclic aromatic hydrocarbons (PAHs), including the Group 1 human carcinogen benzo[a]pyrene (BaP), are produced by the incomplete combustion of organic matter and thus are present in tobacco smoke, charbroiled food and diesel exhaust. The nematode Caenorhabditis elegans is an established model organism, however it lacks the genetic components of the classical mammalian cytochrome P450 (CYP)-mediated BaP-diol-epoxide metabolism pathway. We therefore introduced human CYP1A1 or CYP1A2 together with human epoxide hydrolase (EPHX) into the worm genome by Mos1-mediated Single Copy Insertion (MosSCI) and evaluated their response to BaP exposure via toxicological endpoints. Compared to wild-type control, CYP-humanised worms were characterised by an increase in pharyngeal pumping rate and a decrease in volumetric surface area. Furthermore, BaP exposure reduced reproductive performance, as reflected in smaller brood size, which coincided with the downregulation of the nematode-specific major sperm protein as determined by transcriptomics (RNAseq). BaP-mediated reproductive toxicity was exacerbated in CYP-humanised worms at higher exposure levels. Collagen-related genes were downregulated in BaP-exposed animals, which correlate with the reduction in volumetric size. Whole genome DNA sequencing revealed a higher frequency of T > G (A > C) base substitution mutations in worms expressing human CYP1A1;EPHX which aligned with an increase in DNA adducts identified via an ELISA method (but not classical 32P-postlabelling). Overall, the CYP-humanised worms provided new insights into the value of genome-optimised invertebrate models by identifying the benefits and limitations within the context of the (3Rs) concept which aims to replace, reduce and refine the use of animals in research.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environment International
Environment International 环境科学-环境科学
CiteScore
21.90
自引率
3.40%
发文量
734
审稿时长
2.8 months
期刊介绍: Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review. It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信