{"title":"Cover crop providing windborne pollen enhances the efficacy of biocontrol of multiple pests by Euseius sojaensis in citrus orchards","authors":"Yuta Tsuchida, Shinichi Masui","doi":"10.1007/s10340-024-01856-0","DOIUrl":null,"url":null,"abstract":"<p>Species of generalist phytoseiid mites in the genus <i>Euseius</i> are effective natural enemies of multiple arthropod pests in various types of orchards worldwide. Cover crops increase the densities of these predators and can help reduce pest densities, but their practical roles and effects in enhancing biological control have not yet been completely unveiled yet. Here, we examined the efficacy of biocontrol of <i>Panonychus citri</i> (McGregor) and <i>Aculops pelekassi</i> (Keifer) by naturally occurring <i>Euseius sojaensis</i> (Ehara) in commercial Japanese citrus orchards with cover crops of <i>Lolium perenne</i> L. (perennial ryegrass) managed in two different ways: flowering and mowing. In the flowering plots, the numbers of windborne pollen grains and phytoseiid mites were larger, <i>P. citri</i> populations were smaller, and rates of fruit injury caused by <i>A. pelekassi</i> were significantly lower than in mown plots. In early summer, the number of <i>E. sojaensis</i> in the flowering plots peaked following a peak in the abundance of windborne Poaceae pollen caught on the citrus trees. These results suggest that the windborne pollen supplied from cover crops of <i>L. perenne</i> boosts the populations of <i>E. sojaensis</i> inhabiting the citrus trees and enhances the efficacy of biocontrol of <i>P. citri</i> and <i>A. pelekassi</i>. The percentage of <i>E. sojaensis</i> females with eggs was higher in flowering plots than in mown plots. Therefore, in conservation biological control, a perennial ryegrass cover crop flowering in early summer would be beneficial for increasing the fecundity of this predatory mite, even when prey (pest) densities are low.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"20 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01856-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Species of generalist phytoseiid mites in the genus Euseius are effective natural enemies of multiple arthropod pests in various types of orchards worldwide. Cover crops increase the densities of these predators and can help reduce pest densities, but their practical roles and effects in enhancing biological control have not yet been completely unveiled yet. Here, we examined the efficacy of biocontrol of Panonychus citri (McGregor) and Aculops pelekassi (Keifer) by naturally occurring Euseius sojaensis (Ehara) in commercial Japanese citrus orchards with cover crops of Lolium perenne L. (perennial ryegrass) managed in two different ways: flowering and mowing. In the flowering plots, the numbers of windborne pollen grains and phytoseiid mites were larger, P. citri populations were smaller, and rates of fruit injury caused by A. pelekassi were significantly lower than in mown plots. In early summer, the number of E. sojaensis in the flowering plots peaked following a peak in the abundance of windborne Poaceae pollen caught on the citrus trees. These results suggest that the windborne pollen supplied from cover crops of L. perenne boosts the populations of E. sojaensis inhabiting the citrus trees and enhances the efficacy of biocontrol of P. citri and A. pelekassi. The percentage of E. sojaensis females with eggs was higher in flowering plots than in mown plots. Therefore, in conservation biological control, a perennial ryegrass cover crop flowering in early summer would be beneficial for increasing the fecundity of this predatory mite, even when prey (pest) densities are low.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.