The inflammatory microenvironment of the lung at the time of infection governs innate control of SARS-CoV-2 replication

IF 17.6 1区 医学 Q1 IMMUNOLOGY
Paul J. Baker, Andrea C. Bohrer, Ehydel Castro, Eduardo P. Amaral, Maryonne Snow-Smith, Flor Torres-Juárez, Sydnee T. Gould, Artur T. L. Queiroz, Eduardo R. Fukutani, Cassandra M. Jordan, Jaspal S. Khillan, Kyoungin Cho, Daniel L. Barber, Bruno B. Andrade, Reed F. Johnson, Kerry L. Hilligan, Katrin D. Mayer-Barber
{"title":"The inflammatory microenvironment of the lung at the time of infection governs innate control of SARS-CoV-2 replication","authors":"Paul J. Baker, Andrea C. Bohrer, Ehydel Castro, Eduardo P. Amaral, Maryonne Snow-Smith, Flor Torres-Juárez, Sydnee T. Gould, Artur T. L. Queiroz, Eduardo R. Fukutani, Cassandra M. Jordan, Jaspal S. Khillan, Kyoungin Cho, Daniel L. Barber, Bruno B. Andrade, Reed F. Johnson, Kerry L. Hilligan, Katrin D. Mayer-Barber","doi":"10.1126/sciimmunol.adp7951","DOIUrl":null,"url":null,"abstract":"Severity of COVID-19 is affected by multiple factors; however, it is not understood how the inflammatory milieu of the lung at the time of SARS-CoV-2 exposure affects the control of viral replication. Here, we demonstrate that immune events in the mouse lung closely preceding SARS-CoV-2 infection affect viral control and identify innate immune pathways that limit viral replication. Pulmonary inflammatory stimuli including resolved, antecedent respiratory infections with <jats:italic>Staphylococcus aureus</jats:italic> or influenza, ongoing pulmonary <jats:italic>Mycobacterium tuberculosis</jats:italic> infection, ovalbumin/alum-induced asthma, or airway administration of TLR ligands and recombinant cytokines all establish an antiviral state in the lung that restricts SARS-CoV-2 replication. In addition to antiviral type I interferons, TNFα and IL-1 potently precondition the lung for enhanced viral control. Our work shows that SARS-CoV-2 may benefit from an immunologically quiescent lung microenvironment and suggests that heterogeneity in pulmonary inflammation preceding SARS-CoV-2 exposure may contribute to variability in disease outcomes.","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"124 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1126/sciimmunol.adp7951","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Severity of COVID-19 is affected by multiple factors; however, it is not understood how the inflammatory milieu of the lung at the time of SARS-CoV-2 exposure affects the control of viral replication. Here, we demonstrate that immune events in the mouse lung closely preceding SARS-CoV-2 infection affect viral control and identify innate immune pathways that limit viral replication. Pulmonary inflammatory stimuli including resolved, antecedent respiratory infections with Staphylococcus aureus or influenza, ongoing pulmonary Mycobacterium tuberculosis infection, ovalbumin/alum-induced asthma, or airway administration of TLR ligands and recombinant cytokines all establish an antiviral state in the lung that restricts SARS-CoV-2 replication. In addition to antiviral type I interferons, TNFα and IL-1 potently precondition the lung for enhanced viral control. Our work shows that SARS-CoV-2 may benefit from an immunologically quiescent lung microenvironment and suggests that heterogeneity in pulmonary inflammation preceding SARS-CoV-2 exposure may contribute to variability in disease outcomes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Immunology
Science Immunology Immunology and Microbiology-Immunology
CiteScore
32.90
自引率
2.00%
发文量
183
期刊介绍: Science Immunology is a peer-reviewed journal that publishes original research articles in the field of immunology. The journal encourages the submission of research findings from all areas of immunology, including studies on innate and adaptive immunity, immune cell development and differentiation, immunogenomics, systems immunology, structural immunology, antigen presentation, immunometabolism, and mucosal immunology. Additionally, the journal covers research on immune contributions to health and disease, such as host defense, inflammation, cancer immunology, autoimmunity, allergy, transplantation, and immunodeficiency. Science Immunology maintains the same high-quality standard as other journals in the Science family and aims to facilitate understanding of the immune system by showcasing innovative advances in immunology research from all organisms and model systems, including humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信