Leaf warming in the canopy of mature tropical trees reduced photosynthesis due to downregulation of photosynthetic capacity and reduced stomatal conductance

IF 8.3 1区 生物学 Q1 PLANT SCIENCES
New Phytologist Pub Date : 2024-12-07 DOI:10.1111/nph.20320
Kristine Y. Crous, Kali B. Middleby, Alexander W. Cheesman, Angelina Y. M. Bouet, Michele Schiffer, Michael J. Liddell, Craig V. M. Barton, Lucas A. Cernusak
{"title":"Leaf warming in the canopy of mature tropical trees reduced photosynthesis due to downregulation of photosynthetic capacity and reduced stomatal conductance","authors":"Kristine Y. Crous, Kali B. Middleby, Alexander W. Cheesman, Angelina Y. M. Bouet, Michele Schiffer, Michael J. Liddell, Craig V. M. Barton, Lucas A. Cernusak","doi":"10.1111/nph.20320","DOIUrl":null,"url":null,"abstract":"<p>\n</p><ul>\n<li>Tropical forests play a large role in the global carbon cycle by annually absorbing 30% of our annual carbon emissions. However, these forests have evolved under relatively stable temperature conditions and may be sensitive to current climate warming. Few experiments have investigated the effects of warming on large, mature trees to better understand how higher temperatures affect these forests <i>in situ</i>.</li>\n<li>We targeted four tree species (<i>Endiandra microneura</i>, <i>Castanospermum australe</i>, <i>Cleistanthus myrianthus</i> and <i>Myristica globosa</i>) of the Australian tropical rainforest and warmed leaves in the canopy by 4°C for 8 months. We measured temperature response curves of photosynthesis and respiration, and determined the critical temperatures for chloroplast function based on Chl fluorescence.</li>\n<li>Both stomatal conductance and photosynthesis were strongly reduced by 48 and 35%, respectively, with warming. While reduced stomatal conductance was likely in response to higher vapour pressure deficit, the biochemistry of photosynthesis responded to higher temperatures via reduced <i>V</i><sub>cmax25</sub> (−28%) and <i>J</i><sub>max25</sub> (−29%). There was no shift of the <i>T</i><sub>opt</sub> of photosynthesis. Concurrently, respiration rates at a common temperature did not change in response to warming, suggesting limited respiratory thermal acclimation.</li>\n<li>This combination of physiological responses to leaf warming in mature tropical trees may suggest a reduced carbon sink with future warming in tropical forests.</li>\n</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"17 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20320","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

  • Tropical forests play a large role in the global carbon cycle by annually absorbing 30% of our annual carbon emissions. However, these forests have evolved under relatively stable temperature conditions and may be sensitive to current climate warming. Few experiments have investigated the effects of warming on large, mature trees to better understand how higher temperatures affect these forests in situ.
  • We targeted four tree species (Endiandra microneura, Castanospermum australe, Cleistanthus myrianthus and Myristica globosa) of the Australian tropical rainforest and warmed leaves in the canopy by 4°C for 8 months. We measured temperature response curves of photosynthesis and respiration, and determined the critical temperatures for chloroplast function based on Chl fluorescence.
  • Both stomatal conductance and photosynthesis were strongly reduced by 48 and 35%, respectively, with warming. While reduced stomatal conductance was likely in response to higher vapour pressure deficit, the biochemistry of photosynthesis responded to higher temperatures via reduced Vcmax25 (−28%) and Jmax25 (−29%). There was no shift of the Topt of photosynthesis. Concurrently, respiration rates at a common temperature did not change in response to warming, suggesting limited respiratory thermal acclimation.
  • This combination of physiological responses to leaf warming in mature tropical trees may suggest a reduced carbon sink with future warming in tropical forests.

求助全文
约1分钟内获得全文 求助全文
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信