Quantitative features of osteo-bioactive Ti surfaces at the atomic/molecular level.

Fengxiong Luo, Dongxuan Li, Yu Yang, Jiajun Liu, Ruiqi Mao, Yawen Huang, Jian Lu, Xiangdong Zhu, Kefeng Wang, Yujiang Fan, Xingdong Zhang
{"title":"Quantitative features of osteo-bioactive Ti surfaces at the atomic/molecular level.","authors":"Fengxiong Luo, Dongxuan Li, Yu Yang, Jiajun Liu, Ruiqi Mao, Yawen Huang, Jian Lu, Xiangdong Zhu, Kefeng Wang, Yujiang Fan, Xingdong Zhang","doi":"10.1039/d4tb02195a","DOIUrl":null,"url":null,"abstract":"<p><p>The osteo-bioactive potential of biomaterials can be modulated by altering material properties such as chemical composition, surface topography, and geometry. The correlation between the physicochemical properties of biomaterials and their osteo-bioactivity is highly complex. As a material widely used in bone repair, the structure-activity/dose-effect relationship between titanium (Ti) surface features and osteo-bioactivity remains unclear. To quantitatively enhance the osteogenic activity of Ti, we employed femtosecond laser (FSL) technology to create Ti surfaces with gradient changes in bioactive (nucleation) sites. Based on the apatite deposition ability on the etched surfaces, the quantitative relationship between the osteo-bioactivity of Ti surfaces and their characteristic parameters was systematically explored. Concurrently, classical molecular dynamics (MD) simulations were utilized to investigate the aggregation behavior of calcium and phosphate ions on the Ti surfaces with different sites. The findings from mineralization experiments revealed that the type and density of bioactive sites could influence the deposition of apatite. It was further identified that TiO<sub>2</sub> and Ti-OH are the crucial bioactive sites, with basic Ti-OH exhibiting superior efficacy as a bioactive site compared to its acidic counterpart. Moreover, the bioactive (nucleation) site densities should be maintained at a minimum of 2.33 ± 0.55 nm<sup>-2</sup> for TiO<sub>2</sub> and 2.50 ± 0.59 nm<sup>-2</sup> for -OH, ensuring satisfactory osteo-bioactivity on the Ti surface. The results provide the atomic/molecular features of Ti surfaces that effectively foster apatite deposition and bioactivity, promoting the rapid progression of titanium-based bone repair materials.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb02195a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The osteo-bioactive potential of biomaterials can be modulated by altering material properties such as chemical composition, surface topography, and geometry. The correlation between the physicochemical properties of biomaterials and their osteo-bioactivity is highly complex. As a material widely used in bone repair, the structure-activity/dose-effect relationship between titanium (Ti) surface features and osteo-bioactivity remains unclear. To quantitatively enhance the osteogenic activity of Ti, we employed femtosecond laser (FSL) technology to create Ti surfaces with gradient changes in bioactive (nucleation) sites. Based on the apatite deposition ability on the etched surfaces, the quantitative relationship between the osteo-bioactivity of Ti surfaces and their characteristic parameters was systematically explored. Concurrently, classical molecular dynamics (MD) simulations were utilized to investigate the aggregation behavior of calcium and phosphate ions on the Ti surfaces with different sites. The findings from mineralization experiments revealed that the type and density of bioactive sites could influence the deposition of apatite. It was further identified that TiO2 and Ti-OH are the crucial bioactive sites, with basic Ti-OH exhibiting superior efficacy as a bioactive site compared to its acidic counterpart. Moreover, the bioactive (nucleation) site densities should be maintained at a minimum of 2.33 ± 0.55 nm-2 for TiO2 and 2.50 ± 0.59 nm-2 for -OH, ensuring satisfactory osteo-bioactivity on the Ti surface. The results provide the atomic/molecular features of Ti surfaces that effectively foster apatite deposition and bioactivity, promoting the rapid progression of titanium-based bone repair materials.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信