In situ fabricated gold nanostars on hydrogel beads as photo-oxidase mimics for rapid and sustainable POCT of uric acid.

Tanushree Das, Saurav Das, Debapratim Das
{"title":"<i>In situ</i> fabricated gold nanostars on hydrogel beads as photo-oxidase mimics for rapid and sustainable POCT of uric acid.","authors":"Tanushree Das, Saurav Das, Debapratim Das","doi":"10.1039/d4tb02096k","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic enzyme mimics surpass their natural counterparts in terms of stability, efficiency, and cost-effectiveness, making them highly valuable for catalytic applications. Gold nanomaterials, particularly gold nanostars, have emerged as promising enzyme mimetic nanocatalysts due to their enhanced light interaction and superior catalytic efficiency. In this study, gold nanostars grown <i>in situ</i> on the surface of core-shell hydrogel beads exhibited specific oxidase-like activity when exposed to light. Photoexcitation of gold nanostars generates singlet oxygen through the interaction of positive holes and superoxide radicals, resulting in photo-oxidase-like activity. Attaching the gold nanostars to the hydrogel bead surface prevented catalytic activity loss caused by agglomeration, resulting in a marked improvement in catalytic stability. This stability is evident from the sustained catalytic activity of the hydrogel bead-embedded gold nanostars, even after 60 days of prolonged incubation in an aqueous medium, and their strong catalytic performance across multiple reaction cycles. Leveraging this photo-oxidase-like activity, a point-of-care testing (POCT) setup is developed for highly sensitive uric acid detection. The system achieved a remarkable detection limit of 0.9 μM and demonstrated excellent accuracy in blood serum and urine sample analyses. Furthermore, the integration of smartphone technology facilitated rapid and convenient on-site testing, bridging the gap between laboratory settings and real-world applications. This approach offers a practical and sustainable solution for efficient and accurate uric acid monitoring in diverse settings.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb02096k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic enzyme mimics surpass their natural counterparts in terms of stability, efficiency, and cost-effectiveness, making them highly valuable for catalytic applications. Gold nanomaterials, particularly gold nanostars, have emerged as promising enzyme mimetic nanocatalysts due to their enhanced light interaction and superior catalytic efficiency. In this study, gold nanostars grown in situ on the surface of core-shell hydrogel beads exhibited specific oxidase-like activity when exposed to light. Photoexcitation of gold nanostars generates singlet oxygen through the interaction of positive holes and superoxide radicals, resulting in photo-oxidase-like activity. Attaching the gold nanostars to the hydrogel bead surface prevented catalytic activity loss caused by agglomeration, resulting in a marked improvement in catalytic stability. This stability is evident from the sustained catalytic activity of the hydrogel bead-embedded gold nanostars, even after 60 days of prolonged incubation in an aqueous medium, and their strong catalytic performance across multiple reaction cycles. Leveraging this photo-oxidase-like activity, a point-of-care testing (POCT) setup is developed for highly sensitive uric acid detection. The system achieved a remarkable detection limit of 0.9 μM and demonstrated excellent accuracy in blood serum and urine sample analyses. Furthermore, the integration of smartphone technology facilitated rapid and convenient on-site testing, bridging the gap between laboratory settings and real-world applications. This approach offers a practical and sustainable solution for efficient and accurate uric acid monitoring in diverse settings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信