Kinetic and isotherm study for the adsorption of per- and polyfluoroalkyl substances (PFAS) on activated carbon in the low ng/L range.

Marko Pranić, Livio Carlucci, Albert van der Wal, Jouke E Dykstra
{"title":"Kinetic and isotherm study for the adsorption of per- and polyfluoroalkyl substances (PFAS) on activated carbon in the low ng/L range.","authors":"Marko Pranić, Livio Carlucci, Albert van der Wal, Jouke E Dykstra","doi":"10.1016/j.chemosphere.2024.143889","DOIUrl":null,"url":null,"abstract":"<p><p>Activated carbon adsorption is a widely used technology for the removal of per- and polyfluoroalkyl substances (PFAS). However, the rapid breakthrough of PFAS in activated carbon filters poses a challenge to meet the very low allowable PFAS concentrations in drinking water, leading to high operational costs. In this study, we conducted batch isotherm and kinetic adsorption experiments using nine different types of PFAS molecules at concentrations typically found in water sources used for drinking water production (0.1-100 ng/L). The isotherm experiments at these low concentrations reveal that the maximum adsorption capacity of several PFAS is much lower than reported in literature. The estimated isotherms were included in a dynamic model that includes mass transport based on surface diffusion. This model effectively describes the experimental kinetic data, and the obtained surface diffusion coefficients indicate a very slow PFAS surface mobility. Additionally, our findings indicate that PFAS surface mobility decreases in scenarios with more available adsorption sites. Notably, mesoporous activated carbon, with its higher adsorption capacity, exhibits lower PFAS surface mobility than microporous carbon with lower PFAS adsorption capacity. Moreover, for both carbons, we observed a decrease in PFAS surface mobility at higher carbon loadings when the surface is less saturated with PFAS. Our findings suggest potential inherent limitations in activated carbon technology for PFAS removal under environmentally relevant conditions, as we observed lower adsorption capacities than previously reported at higher concentrations, and a decrease in PFAS surface mobility with more available adsorption sites.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143889"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Activated carbon adsorption is a widely used technology for the removal of per- and polyfluoroalkyl substances (PFAS). However, the rapid breakthrough of PFAS in activated carbon filters poses a challenge to meet the very low allowable PFAS concentrations in drinking water, leading to high operational costs. In this study, we conducted batch isotherm and kinetic adsorption experiments using nine different types of PFAS molecules at concentrations typically found in water sources used for drinking water production (0.1-100 ng/L). The isotherm experiments at these low concentrations reveal that the maximum adsorption capacity of several PFAS is much lower than reported in literature. The estimated isotherms were included in a dynamic model that includes mass transport based on surface diffusion. This model effectively describes the experimental kinetic data, and the obtained surface diffusion coefficients indicate a very slow PFAS surface mobility. Additionally, our findings indicate that PFAS surface mobility decreases in scenarios with more available adsorption sites. Notably, mesoporous activated carbon, with its higher adsorption capacity, exhibits lower PFAS surface mobility than microporous carbon with lower PFAS adsorption capacity. Moreover, for both carbons, we observed a decrease in PFAS surface mobility at higher carbon loadings when the surface is less saturated with PFAS. Our findings suggest potential inherent limitations in activated carbon technology for PFAS removal under environmentally relevant conditions, as we observed lower adsorption capacities than previously reported at higher concentrations, and a decrease in PFAS surface mobility with more available adsorption sites.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信