Cerebrovascular-Specific Extracellular Matrix Bioink Promotes Blood-Brain Barrier Properties.

IF 8.1 Q1 ENGINEERING, BIOMEDICAL
Biomaterials research Pub Date : 2024-12-05 eCollection Date: 2024-01-01 DOI:10.34133/bmr.0115
Hohyeon Han, Sooyeon Lee, Ge Gao, Hee-Gyeong Yi, Sun Ha Paek, Jinah Jang
{"title":"Cerebrovascular-Specific Extracellular Matrix Bioink Promotes Blood-Brain Barrier Properties.","authors":"Hohyeon Han, Sooyeon Lee, Ge Gao, Hee-Gyeong Yi, Sun Ha Paek, Jinah Jang","doi":"10.34133/bmr.0115","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic neuroinflammation is a principal cause of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The blood-brain barrier predominantly comprises endothelial cells, and their intercellular communication with pericytes and other cell types regulates neuroinflammation. Here, we develop a tubular, perfusable model of human cerebrovascular tissues to study neurodegenerative diseases using cerebrovascular-specific extracellular matrix bioink, derived from a complementary blend of brain- and blood-vessel-derived extracellular matrices. The endothelial cells and pericytes in the bioprinted constructs spontaneously self-assemble into a dual-layered structure, closely mimicking the anatomy of the blood-brain barrier. Moreover, the mature cerebrovascular tissue shows physiological barrier functions and neuroinflammatory responses, indicating its potential for developing models of neuroinflammation-related pathologies. Collectively, our study demonstrates that furnishing a cerebrovascular-specific microenvironment can guide the cells to have native-like anatomical relevance and functional recapitulation in vitro.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0115"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617618/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic neuroinflammation is a principal cause of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The blood-brain barrier predominantly comprises endothelial cells, and their intercellular communication with pericytes and other cell types regulates neuroinflammation. Here, we develop a tubular, perfusable model of human cerebrovascular tissues to study neurodegenerative diseases using cerebrovascular-specific extracellular matrix bioink, derived from a complementary blend of brain- and blood-vessel-derived extracellular matrices. The endothelial cells and pericytes in the bioprinted constructs spontaneously self-assemble into a dual-layered structure, closely mimicking the anatomy of the blood-brain barrier. Moreover, the mature cerebrovascular tissue shows physiological barrier functions and neuroinflammatory responses, indicating its potential for developing models of neuroinflammation-related pathologies. Collectively, our study demonstrates that furnishing a cerebrovascular-specific microenvironment can guide the cells to have native-like anatomical relevance and functional recapitulation in vitro.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信