Luise Strauch, Melanie von der Wiesche, Alexandra Noppe, Edwin Mulder, Iris Rieger, Daniel Aeschbach, Eva-Maria Elmenhorst
{"title":"Simulating microgravity with 60 days of 6 degree head-down tilt bed rest compromises sleep.","authors":"Luise Strauch, Melanie von der Wiesche, Alexandra Noppe, Edwin Mulder, Iris Rieger, Daniel Aeschbach, Eva-Maria Elmenhorst","doi":"10.1038/s41526-024-00448-7","DOIUrl":null,"url":null,"abstract":"<p><p>Astronauts in space often experience sleep loss. In the AGBRESA (Artificial Gravity Bed Rest) study, we examined 24 participants (mean age ± SD, 33 ± 9 years) during two months of 6<sup>o</sup> head-down tilt (HDT) bed rest, which is a well-established spaceflight analogue. Polysomnography was recorded during baseline (BDC-9), HDT (nights 1, 8, 30 and 58) and recovery (R, nights 1 and 12). Mixed ANOVAs with post-hoc step-down Bonferroni adjustment indicated that compared to BDC-9, arousals were increased, while sleep duration, N3, and sleep efficiency were all decreased during HDT. Significant quadratic associations between sleep duration and quality with time into HDT did not indicate adaptive improvements during the course of HDT. While sleep duration recovered quickly after the end of bed rest, participants still displayed protracted sleep fragmentation. We conclude that physiological changes caused by exposure to microgravity may contribute to persistent sleep deficits experienced during real space missions.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"109"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621691/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00448-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Astronauts in space often experience sleep loss. In the AGBRESA (Artificial Gravity Bed Rest) study, we examined 24 participants (mean age ± SD, 33 ± 9 years) during two months of 6o head-down tilt (HDT) bed rest, which is a well-established spaceflight analogue. Polysomnography was recorded during baseline (BDC-9), HDT (nights 1, 8, 30 and 58) and recovery (R, nights 1 and 12). Mixed ANOVAs with post-hoc step-down Bonferroni adjustment indicated that compared to BDC-9, arousals were increased, while sleep duration, N3, and sleep efficiency were all decreased during HDT. Significant quadratic associations between sleep duration and quality with time into HDT did not indicate adaptive improvements during the course of HDT. While sleep duration recovered quickly after the end of bed rest, participants still displayed protracted sleep fragmentation. We conclude that physiological changes caused by exposure to microgravity may contribute to persistent sleep deficits experienced during real space missions.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.