Yuting Feng , Zhiwei Jiang , Chaozhen Chen , Ling Hu , Qifeng Jiang , Yuchen Wang , Zhenxuan Cheng , Fang Wang , Guoli Yang , Ying Wang
{"title":"Laminin expression profiles of osteogenic-and chondrogenic-induced dECM sheets","authors":"Yuting Feng , Zhiwei Jiang , Chaozhen Chen , Ling Hu , Qifeng Jiang , Yuchen Wang , Zhenxuan Cheng , Fang Wang , Guoli Yang , Ying Wang","doi":"10.1016/j.bioadv.2024.214127","DOIUrl":null,"url":null,"abstract":"<div><div>Decellularized extracellular matrix sheets (dECMSs) produced by stem cells have attracted attention because they preserve the natural biological activity of the ECM to direct lineage-specific differentiation with less immunogenicity. As a core ECM protein, laminin modulates cellular phenotype and differentiation. Nevertheless, no studies thus far have explored the distribution and abundance of laminins in diverse dECMSs. Herein, we first compared the differential expression of laminins among dECMSs in osteogenic-induced medium (OI-dECMS), chondrogenic-induced medium (CI-dECMS), and standard medium (dECMS), employing a defined mass spectrometry (MS)-based proteomic analysis. In vitro, dECMSs were verified to be successfully decellularized. Cluster analysis identified a marked fluctuation in the expression of 7 laminins and 17 laminin-associated proteins in OI-dECMS vs dECMS and CI-dECMS vs dECMS. Two significantly changed pathways were selected from the KEGG pathway enrichment analysis: the FAK/ERK pathway and the PI3K/AKT pathway.</div><div>Moreover, Alkaline Phosphatase (ALP) activity, Alcian blue staining, and RT-qPCR results for recellularization showed that CI-dECMS promotes chondrogenesis while OI-dECMS inhibits osteogenesis compared with dECMS. In vivo experiments were conducted to implant dECMSs in a rat osteochondral defect, demonstrating that dECMS and CI-dECMS promoted bone and cartilage repair. Furthermore, the inhibitory analysis was performed to verify the function of specific laminin isoforms modulating osteogenesis and chondrogenesis, which might be related to FAK/ERK and PI3K/AKT pathways. In summary, this study constructed dECMS, OI-dECMS, and CI-dECMS and uncovered the internal comprehensive molecular regulatory network centralized by laminins, thus proposing a biomimetic substitute for bone and cartilage regeneration.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"169 ","pages":"Article 214127"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950824003704","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Decellularized extracellular matrix sheets (dECMSs) produced by stem cells have attracted attention because they preserve the natural biological activity of the ECM to direct lineage-specific differentiation with less immunogenicity. As a core ECM protein, laminin modulates cellular phenotype and differentiation. Nevertheless, no studies thus far have explored the distribution and abundance of laminins in diverse dECMSs. Herein, we first compared the differential expression of laminins among dECMSs in osteogenic-induced medium (OI-dECMS), chondrogenic-induced medium (CI-dECMS), and standard medium (dECMS), employing a defined mass spectrometry (MS)-based proteomic analysis. In vitro, dECMSs were verified to be successfully decellularized. Cluster analysis identified a marked fluctuation in the expression of 7 laminins and 17 laminin-associated proteins in OI-dECMS vs dECMS and CI-dECMS vs dECMS. Two significantly changed pathways were selected from the KEGG pathway enrichment analysis: the FAK/ERK pathway and the PI3K/AKT pathway.
Moreover, Alkaline Phosphatase (ALP) activity, Alcian blue staining, and RT-qPCR results for recellularization showed that CI-dECMS promotes chondrogenesis while OI-dECMS inhibits osteogenesis compared with dECMS. In vivo experiments were conducted to implant dECMSs in a rat osteochondral defect, demonstrating that dECMS and CI-dECMS promoted bone and cartilage repair. Furthermore, the inhibitory analysis was performed to verify the function of specific laminin isoforms modulating osteogenesis and chondrogenesis, which might be related to FAK/ERK and PI3K/AKT pathways. In summary, this study constructed dECMS, OI-dECMS, and CI-dECMS and uncovered the internal comprehensive molecular regulatory network centralized by laminins, thus proposing a biomimetic substitute for bone and cartilage regeneration.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!