{"title":"Tensor ring rank determination using odd-dimensional unfolding.","authors":"Yichun Qiu, Guoxu Zhou, Chao Li, Danilo Mandic, Qibin Zhao","doi":"10.1016/j.neunet.2024.106947","DOIUrl":null,"url":null,"abstract":"<p><p>While tensor ring (TR) decomposition methods have been extensively studied, the determination of TR-ranks remains a challenging problem, with existing methods being typically sensitive to the determination of the starting rank (i.e., the first rank to be optimized). Moreover, current methods often fail to adaptively determine TR-ranks in the presence of noisy and incomplete data, and exhibit computational inefficiencies when handling high-dimensional data. To address these issues, we propose an odd-dimensional unfolding method for the effective determination of TR-ranks. This is achieved by leveraging the symmetry of the TR model and the bound rank relationship in TR decomposition. In addition, we employ the singular value thresholding algorithm to facilitate the adaptive determination of TR-ranks and use randomized sketching techniques to enhance the efficiency and scalability of the method. Extensive experimental results in rank identification, data denoising, and completion demonstrate the potential of our method for a broad range of applications.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"106947"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106947","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
While tensor ring (TR) decomposition methods have been extensively studied, the determination of TR-ranks remains a challenging problem, with existing methods being typically sensitive to the determination of the starting rank (i.e., the first rank to be optimized). Moreover, current methods often fail to adaptively determine TR-ranks in the presence of noisy and incomplete data, and exhibit computational inefficiencies when handling high-dimensional data. To address these issues, we propose an odd-dimensional unfolding method for the effective determination of TR-ranks. This is achieved by leveraging the symmetry of the TR model and the bound rank relationship in TR decomposition. In addition, we employ the singular value thresholding algorithm to facilitate the adaptive determination of TR-ranks and use randomized sketching techniques to enhance the efficiency and scalability of the method. Extensive experimental results in rank identification, data denoising, and completion demonstrate the potential of our method for a broad range of applications.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.