Illumination-Guided progressive unsupervised domain adaptation for low-light instance segmentation.

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yi Zhang, Jichang Guo, Huihui Yue, Sida Zheng, Chonghao Liu
{"title":"Illumination-Guided progressive unsupervised domain adaptation for low-light instance segmentation.","authors":"Yi Zhang, Jichang Guo, Huihui Yue, Sida Zheng, Chonghao Liu","doi":"10.1016/j.neunet.2024.106958","DOIUrl":null,"url":null,"abstract":"<p><p>Due to limited photons, low-light environments pose significant challenges for computer vision tasks. Unsupervised domain adaptation offers a potential solution, but struggles with domain misalignment caused by inadequate utilization of features at different stages. To address this, we propose an Illumination-Guided Progressive Unsupervised Domain Adaptation method, called IPULIS, for low-light instance segmentation by progressively exploring the alignment of features at image-, instance-, and pixel-levels between normal- and low-light conditions under illumination guidance. This is achieved through: (1) an Illumination-Guided Domain Discriminator (IGD) for image-level feature alignment using retinex-derived illumination maps, (2) a Foreground Focus Module (FFM) incorporating global information with local center features to facilitate instance-level feature alignment, and (3) a Contour-aware Domain Discriminator (CAD) for pixel-level feature alignment by matching contour vertex features from a contour-based model. By progressively deploying these modules, IPULIS achieves precise feature alignment, leading to high-quality instance segmentation. Experimental results demonstrate that our IPULIS achieves state-of-the-art performance on real-world low-light dataset LIS.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"106958"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106958","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Due to limited photons, low-light environments pose significant challenges for computer vision tasks. Unsupervised domain adaptation offers a potential solution, but struggles with domain misalignment caused by inadequate utilization of features at different stages. To address this, we propose an Illumination-Guided Progressive Unsupervised Domain Adaptation method, called IPULIS, for low-light instance segmentation by progressively exploring the alignment of features at image-, instance-, and pixel-levels between normal- and low-light conditions under illumination guidance. This is achieved through: (1) an Illumination-Guided Domain Discriminator (IGD) for image-level feature alignment using retinex-derived illumination maps, (2) a Foreground Focus Module (FFM) incorporating global information with local center features to facilitate instance-level feature alignment, and (3) a Contour-aware Domain Discriminator (CAD) for pixel-level feature alignment by matching contour vertex features from a contour-based model. By progressively deploying these modules, IPULIS achieves precise feature alignment, leading to high-quality instance segmentation. Experimental results demonstrate that our IPULIS achieves state-of-the-art performance on real-world low-light dataset LIS.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信